Matlab を利用したシーソー倒立振子の安定化制御

宮澤 武・荒井 誠*・西坂 卓**

Stabilization control of seesaw headstand pendulum by MATLAB

Takeshi MIYAZAWA 'Makoto ARAI 'Suguru NISHIZAKA

Abstract - Two rails are mounted on one seesaw, and the truck that keeps the headstand pendulum vertical on the other rail is set . The truck that is the balance of the seesaw is set on the other rail, and the control system of an unstable seesaw headstand pendulum is constructed . In this paper, it aims to attempt the stabilization control of the constructed seesaw headstand pendulum by using control system design software MATLAB . **Key words ;** MATLAB , Seesaw , Headstand Pendulum , Stabilization control

1.はじめに

近年,コンピュータの性能向上に伴い二足歩行ロボ ットが開発され,複雑なバランス制御が可能となって きた。このように外部から制御力を加えなければ不安 定となるシステムの安定化制御には状態方程式に基づ く多入力多出力の現代制御理論¹⁾が必要となる。現代 制御理論を用いた制御系設計の基礎を学ぶための対象 として一般に倒立振子を用いた実験が行われている。

本研究室では,過去の卒業研究において回転型,直 動型,回転振上げ型など多くの倒立振子システムを設 計・製作し,その安定化制御プログラムを開発²⁾³⁾⁴⁾ してきた。今回シーソー上に二つのレールを載せ,一 方にはシーソーを水平に保つバランス台車を,他方の レールには振子を垂直に立てる倒立振子台車をセット する。振子を垂直に立てるためには,倒立振子台車を 左右に適切に移動させる必要があり,シーソーのバラ ンスを崩すことになる。ここでシーソーバランス台車 を振子台車と反対方向へ移動することにより,シーソ ーのバランスをとりながら,倒立振子も垂直に保つシ ステムを構築する。このような不安定な制御系を安定 させるためには,二つの台車駆動モーターを同時に適 切にコントロールする必要がある。 近年制御系設計ソフトとして MATLAB が広く用い られている。本校においても学内 LAN を利用して MATLAB を使用できる環境が整っている。

本研究は,シーソー倒立振子を製作し,MATLABの制 御系ツールSimulinkを用いて理論シミュレーション を行い最適制御係数の理論値を得る。それらの理論値 を基にシ-ソ-のバランスと振子の倒立状態を維持す る制御実験を行って最適実装プログラムを作成するこ とにより,シーソー倒立振子の安定化制御システムを 構築することを目的とする。

- 2.シーソー倒立振子の概要
- 2.1 シーソー倒立振子の数学モデル

* 釧路高専機械工学科

Fig. 2.1 Seesaw headstand pendulum model

^{**} 北見工業大学 機械システム工学科

ここで,

- m₁ : バランス台車の質量(kg)
- m2 : 振子と台車の質量(kg)
- m_p : 振子の質量(kg)
- m_s :シーソーの質量(kg)
- J : 2台のシーソーと重心の回転モーメント(N·m)
- I_p:振子長さLpの1/2長さの位置(質量位置)(m)
- h : ピボットからガイドシャフトまでの距離(m)
- c : シーソーの質量の中心位置(m)
- x₁ : バランス台車の変位(m)
- x_2 : 倒立振子台車の変位(m)
 - : 垂直方向からのシーソーの傾き (rad) : 振子の倒れ角 (rad)
- F₁:バランス台車に掛かる力(N)
- F₂:倒立振子台車に掛かる力(N)

2.2 シーソー倒立振子の運動方程式

この系の位置エネルギーに関する式は

$PE_p = m_p g(h\cos\theta - x_2\sin\theta + l_p\cos(\theta + \alpha))$	(2.1)

- $PE_{m2} = m_2 g (h \cos\theta x_2 \sin\theta)$ (2.2)
- $PE_{m1} = m_1 g(h\cos\theta x_1\sin\theta) \qquad (2.3)$
- $PE_s = m_s gc\cos\theta \qquad (2.4)$

この系の運動エネルギーに関する式は

 $KE_{p} = 0.5m_{p}(((h\cos\theta \quad x_{2}\sin\theta + l_{p}\cos(\theta + \alpha))\theta + x_{2}\cos\theta + l_{p}\cos(\theta + \alpha)\theta) + (h\cos\theta - x_{2}\cos\theta - l_{p}\sin(\theta + \alpha))\theta) + (h\cos\theta - x_{2}\cos\theta - l_{p}\sin(\theta + \alpha))\theta)$ $- x_{2}\sin\theta - l_{p}\sin(\theta + \alpha)\theta)$

 $KE_{m1} = 0.5m_1((x_1^{2} + h \theta)^{2} + (x_1 \theta)^{2})$ (2.6)

(2.5)

₫\$\$\$ =

$$KE_{m2} = 0.5m_2((x_2 + h\phi)^2 + (x_2\phi)^2)$$
(2.7)

$$KE_s = 0.5J \theta^2 \tag{2.8}$$

トータルの運動エネルギーT と位置エネルギーV は次の様になる。

$$T = KE_{m1} + KE_{m2} + KE_{s} + KE_{p}$$
 (2.9)

$$V = PE_{m1} + PE_{m2} + PE_{s} + PE_{p}$$
 (2.10)
また, ラグランジェ方程式より

$$L = T - V \tag{2.11}$$

一般式を応用して運動方程式を求めると次式になる。

$$\frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \mathbf{x}_{1}} \right) - \frac{\partial L}{\partial x_{1}} = F_{1}$$
(2.12)

$$\frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \mathbf{x}_2} \right) - \frac{\partial L}{\partial x_2} = F_2 \qquad (2.13)$$

$$\frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \mathbf{k}} \right) - \frac{\partial L}{\partial t} = 0 \qquad (2.14)$$

$$\frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \alpha^{k}} \right) - \frac{\partial L}{\partial \alpha} = 0 \qquad (2.15)$$

微分を続けると次の4つの非線形微分方程式が得ら れる。

(2.19) 2 階微分の項を求める為に,次の式に置き換える $\mathbf{x} = D_1(x_1, x_2, , \alpha, \mathbf{x}, \mathbf{x},$

23)

$$\mathbf{X} = D_3 \left(x_1, x_2, \ , \alpha, \mathbf{X}, \mathbf{X$$

$$\boldsymbol{\mathcal{A}} = D_4 \left(x_1, x_2, \boldsymbol{\alpha}, \boldsymbol{\mathcal{A}}, \boldsymbol{\mathcal{A}, \boldsymbol{\mathcal{A}}, \boldsymbol{\mathcal{A}}, \boldsymbol{\mathcal{A}}, \boldsymbol{\mathcal{A$$

振子とシーソーの傾きが 0(ゼロ) 付近の & $\mathcal{A}_{2}, \mathcal{A}_{1}, \mathcal{A}_{2}$ をそれぞれ, $\delta \mathcal{A}_{2}, \delta \mathcal{A}_{2}, \delta \mathcal{A}_{1}, \delta \mathcal{A}_{2}$ とすると, (2.24)式 で表すことが出来る。

$$\begin{bmatrix} \delta \mathbf{R} \\ \delta \mathbf{R} \\$$

(2.24)

この計算で求めた。戦、戦、後、の、を使ってシステムの

状態方程式を求めると,

&= *Ax* + *BF* (2.25) となる。ここで A:システム行列,B:配分行列である。

 $\mathbf{x} = \begin{bmatrix} \mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{2} & \mathbf{x}_{3} & \mathbf{x}_{4} & \mathbf{x}_{5} &$ $x = \begin{bmatrix} x_1 & \theta & x_2 & \alpha & x_1 & \theta \\ x_1 & \theta & x_2 & \alpha & x_1 & \theta \\ x_2 & x_1 & x_2 & x_2 & x_2 \end{bmatrix}^T$ 00001000 [O O] 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 A= B =*a b c 0 0 0 0 0* o pd e f 0 0 0 0 0 q rghi j00005 ţ k l m n 0 0 0 0 น v $F = \begin{bmatrix} F_1 & F_2 \end{bmatrix}^T$

(2.26)

a~v はラグランジェの運動方程式によって求め られたシステムパラメータである。x は状態変数マト リクス, F は制御量マトリクスで各台車にかかる力で ある。 ここで,

V :モーターに掛かる電圧(V)
 K_m :モーターの逆起電力定数=0。023V/(rad/sec)
 K_g :モーター内部のギア比
 R :モータコイルの抵抗()
 r :モーターギアの半径[ピニオン](m)
 m:モーター軸の角速度(rad/s)
 :ピニオンの角速度(rad/s)
 :ピニオンの角速度(rad/s)
 : 台車速度(m/s)
 F :台車にかかる力(N)
 M :台車の質量(kg)
 I :モーターコイルの電流(A)
 T :モータートルク(N)

として,

Fをモーターに掛かる電圧 ∨ に置き換える。 雷気的には

$$V = IR + K_m K_g \qquad (2.27)$$

機械的には

$$T = Fr = K_m K_g I & x' = r \quad (2.28)$$

(2.27), (2.28)より,

$$F = \frac{K_m K_g}{Rr} V - \frac{K_m^2 K_g^2}{Rr^2} x'$$
 (2.29)

実際の値を代入すると

$$F_1 = 1.68V_1 - 7.34x_1^{4}$$
 (2.30)

$$F_2 = 1.68V_2 - 7.34x_2 \tag{2.31}$$

更にシーソー角度とのバランスをとる台車に積分器を 追加すると

$$\begin{array}{c} \dot{x}_{1} \\ \dot{\theta} \\ \dot{x}_{2} \\ \dot{a} \\ \dot{x}_{1} \\ \ddot{\theta} \\ \dot{x}_{2} \\ \dot{a} \\ \ddot{x}_{1} \\ \ddot{\theta} \\ \ddot{x}_{2} \\ \ddot{\theta} \\ \dot{\xi} \\ \dot{\xi}$$

(2.34)

従って, Fを V に置き換えた状態方程式は, (2.34)となる。

2.3 状態フィードバック

状態フイードバックとは,状態変数X が x_1 :バラ ンス台車の変位(m), x_2 :倒立振子台車の変位(m),

: 垂直方向からのシーソーの傾き(rad), :振 子の倒れ角(rad)及びそれらの微分(速度)からなり, これらが測定できるという仮定のもとでフィードバッ クをかけることである。制御量 V を n 個の状態変数 X にある定数(フィードバック係数)をかけて次のよう に与える。

$$V = -K \cdot X \tag{2.35}$$

このシステムのフィードバックによる制御力 //は,状態変数 /のそれぞれに10個の係数をかけたものの和として表される。

$$V = (k_a x_1 + k_b \theta + k_c x_2 + k_d \alpha + k_e \mathcal{K} + k_f \theta + k_g \mathcal{K} + k_h \mathcal{K} + k_i \sigma + k_j \zeta)$$
(2.36)

シーソー倒立振子のシーソーを水平に保ち,倒立振 子を垂直に立て,2つの台車をそれぞれ基準の位置に 保つためには,フィードバック係数行列 Kの要素をそ れぞれどのように選ぶかが問題となる。これを計算す るツールが MATLAB の LQR コマンドである

2.4 最適レギュレータ5)

最適レギュレータ理論とは,制御対象が式(2.25) で表せるとき,次に示す評価関数

$$J = \int_{0} (x^{T}Q x + RF^{2}) dt \qquad (Q \ge 0, R > 0)$$
(2.37)

を最小にするような設計変数 Q,Rを選定し,フィード

バック係数行列 *K*を求める方法である。 このとき, *Q* は対角行列で表すと

$$Q = diag\{q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9, q_{10}\}$$
(2.38)

となり,式(2.37)に代入すると次式になる。

$$J = \frac{(q_1 x_1^2 + q_2 x_2^2 + q_3 x_3^2 + q_4 x_4^2 + q_5 x_5^2 + q_6 x_6^2)}{+q_7 x_7^2 + q_8 x_8^2 + q_9 x_9^2 + q_{10} x_{10}^2 + RF^2) dt}$$
(2.39)

式(2.39)より,qiはxiの収束を早めようという 要求と,Rは制御力Fを過大にしたくないという要求 の妥協を図っている。可制御な制御対象に対して,J を最小化するフイードバックゲインKは唯一つに定ま り,

$$K = -R^{-1}B^{T}P (2.40)$$

で与えられる。ただし, Pはリカッティ方程式

$$PA + A^{T}P - R^{-1}PBB^{T}P + Q = 0 \qquad (2.41)$$

の解である。

2.5 フィードバック係数

最適レギュレータ理論より,MATLABの Control System ToolのLQR (Linear Quadratic Regulator)コマ ンドを利用して,状態フイードバックゲインKを求め て状態フィードバックを行えば任意の初期状態にある 系を平衡状態にできる。すなわち,すべての状態変数

 $x_1, \theta, x_2, \alpha, x_1, \theta, x_2, \delta, \sigma, \xi$ をゼロの状態へ落ち

着かせることができる。

これは,初期状態によるものや外乱による振子やシ ーソーの傾き,それぞれの台車を基準位置に保つこと ができることを意味している。

平衡状態からのずれをどの程度速く修正するかは, それぞれの指定する制御Q,R 変数の値に依存する。 *qi*の値を操作することで台車の動きを早くすること や,制御力に対する制御変数Rを大きくすることで制 御力に制限を加えることも容易に行えるようになる。

しかし,重要なのはQとRの比重であり,応答性 を高めて操作量を少なくしたからといって,Q,Rを ともに大きくしても最適点は変わらないので結果とし て意味を持たない。このことを考慮して制御系にあっ た。最適フィードバック係数を求める。

倒立振子・シーソー・それぞれの台車系の状態フィ ードバック係数に対して,最適フィードバック係数を 適用したとき,シーソーの角度や振子の角度,それぞ れの台車の位置が時間的にどのような挙動を示して平 衡状態に落ち着くかについて実験を行い,その実験デ ータをグラフ化して確認する。

3. 理論シミュレーション

MATLAB による LQR 法を使用してフイードバック 係数行列 K を求めるために,振子・台車系の理論シミ ュレーションを行って,概略パラメータを決める。シ ミュレーション条件は台車がシーソー中央から 10 cm 離れ,角度が0.05 rad 倒れた状態を設定し,安定状態 に戻る過程を調べた。この条件下でシミュレートする ことでフィードバック係数 K に対する制御の傾向を調 べることができる。

シミュレーションのブロック線図を Fig.3.1 に示す。 ・シミュレーション例として

制御変数 Q, Rを, Q₁ = 1000, Q₂ = 3, Q₃ = 0, Q₄ = 0, R = 0.0001, としたときの LQR 法によるフィー ドバック係数 K (×10³) は,

K₁=-3.1623 K₂=-2.4700 K₃=-1.2569 K₄=-0.4370, となり そのシミュレーション結果を Fig 3.2 に示す。

Fig.3.1 Block Diagram of Simulation

4. 制御実験

4.1 実験装置の構造

Photo 4.1 Experimental device

実験装置の全容を Photo 4.1 に示す。

4.2 制御システム

実験装置の信号の流れを Fig.4.1 に示す。

4.3 制御実験

理論シミュレーションの傾向を参考に,MATLABを使 用して式(2.26)におけるシステム行列A,配分行列B の各パラメータa~vを計算し,LQR法によってフイ ードバック係数Kを求め Simulink によって制御ブロ ック線図を作成して実験を行った。

1)制御実験例

理論シミュレーションの Q,R を参考に,制御変数 Q q(1,1) =100,q(2,2) =10000,q(3,3) =100, q(4,4)=10000,q(5,5) =100,q(6,6)= 100,q(7,7) =100,q(8,8) =60,q(9,9) = 0。5,q(10,10) =3 制御変数 R R (1,1) = 0.00015, R (2,2) = 0.00003 を選定すると,このとき,状態フィードバック係数 K (×10³)は, K_a= 1.9456,K_b= 0.4018,K_c= 0.0123, K_d= 0.0022+0.0036i,K_e= 0.0022 0.0036i, K_f= 0.0043,K_g= 0.0020,K_h= 0.0011,K_i= ± 0.000,K_j=±0.000, となる。この実験結果をFig.4.2に示す。

制御を開始してから,15秒でシーソーのストッパを はずした。それから約10秒で,振子・シーソーの角度 ともに収束し,各台車の動きも小刻みな動きとなって 安定していることがわかる。

バランス台車と振子台車の位置が同じ方向へ移動し

ているように記録されているが, 各台車モータを対面 させて取り付けているので, 実際の移動方向は, 反対 方向となる。

実験ビデオは<u>http://www.kushiro-ct.ac.</u>

<u>jp/comp/mech/mepl/sotuken/study16.htm</u> に掲載さ れている。

5. まとめ

1) MATLAB を利用した制御系設計は,現代制御理論 のマトリックス計算を容易に実行することができ,数 回のパラメータの変更と実験を繰り返せば最適制御係 数が得られる。

2)シーソー倒立振子のような微妙なバランスシステ ムでは,オーバーシュートは極力避けるべきである。 即ち,振子台車,バランス台車ともに少ない移動量 でシーソー・振子を安定させるようなフィードバック 係数 K の選定が望ましいといえる。

参考文献

- 1) 白石著:入門現代制御理論 第3章 pp19-56 日刊工業新聞社出版 ⁶ 95,03
- 2) 宮澤武·荒井誠: 釧路高専紀要第26号 pp1-6
- 3) 宮澤武·荒井誠: 釧路高専紀要第28号 pp5-10
- 4) 宮澤武·荒井誠: 釧路高専紀要第31号 pp1-6
- 5)川田昌克・西岡勝博共著: MATLAB / Simulink に よるわかりやすい制御工学 第8章 pp159-176 森北出版 '02,09

Fig.4.1 Control system

Fig. 4.2 Result of experiment