磁気的非破壊検査に関するシールド方法の検討

松本 和健*・ 中本 涼介**・ 細野 陽*・ 佐藤 将志***

Shield System for Magnetically Non-Destructive Evaluation

Kazutake MATSUMOTO, Ryosuke NAKAMOTO, Yoh HOSONO and Masashi SATO

Abstract — A method for the cancellation of environmental magnetic noise is described for Non-Destructive Evaluation (NDE) system based on a SQUID magnetometer. NDE system related to a measuring the conductivity of the shallow subsoil is characterized by the signal detecting at specialized frequency and the use in the field. Therefore, we discuss the shield systems with NDE which have the performance of noise reduction in low- and high-frequency region except for this specialized frequency, and the construction with moving ability around anywhere. These shield systems are successfully resulted in both a SQUID based active shielding method in the low-frequency region and a metal foil wrapped shielding method in the high-frequency region. **Key words** : SQUID magnetometer, NDE, magnetically shielding, active compensation

1. はじめに

SQUID磁束計を利用して非破壊検査や資源探査を 応用目的とした様々な微小磁界計測システムが提案さ れている^[1]。高感度磁界計測を実現するためには、磁 束計システム全体のダイナミックレンジとスルーレー トを確保する必要がある^[2]。このような高感度磁界計 測を実現するために、十分な環境雑音除去性能を持つ シールド技術が要求される。本研究では、屋外への携 帯が可能な構造で、測定対象の特定周波数以外の周波 数帯域で80dB以上のシールディングファクター(磁気 雑音を1/10,000以下にシールドする性能に相当)を実 現することを目的としている。

我々は、SQUID磁束計を用いた非破壊検査の屋外 応用として、磁界無線探査法による土壌インピーダン スの計測^[3]を研究している。この応用では、屋外での 微小磁界計測を環境磁気雑音の影響なしに行うことは もちろんであるが、典型的な微小磁界応用である生体 磁気計測で対象とする周波数領域^[1]よりも二桁以上も 高い周波数^[3] (500 [kHz] ~ 2 [MHz] 程度)での動作

*** 現在,北海道電力に勤務

が要求される。但し、この磁界計測で測定対象となる 周波数はラジオの中波帯であり、離散した特定の周波 数の信号が対象であるといった特徴を持っている。そ こで、本研究では、この特定の周波数以外の低周波領 域と高周波領域の雑音を除去できる、二種類のシール ド方法について検討した。

SQUID磁束計を用いた動的磁気シールド法は低周 波領域で大きなシールド性能を示すので^[4],本研究の 応用でも低周波領域のシールド方法に用いることにし た。本研究では、動的磁気シールド法の磁束帰還回路 系の伝達特性の設計及び補正磁界の均一度向上可能な コイル構成の設計を行った。特に、可搬性のため可能 な限り小型のコイルで、より高周波まで雑音除去可能 な動的磁気シールド技術の実現に関して検討した。

一方,計測信号よりも高周波側の電磁波のシールド については金属箔による電磁波シールドを用いること にした。本研究では、金属シールドの周波数特性につ いて実験値と近似式の比較検討を行った。また、導体 シールド面の大きさ又は、導電率を温度等によってコ ントロールすることで、シールド周波数を計測信号に 合わせて可変できる方法の実現を目的としている。そ こで今回は、金属シールドの形状や抵抗率による基礎 的なシールド特性変化の実験的評価を行った。

^{*} 釧路高専電子工学科

^{**}釧路高専電子情報システム工学専攻

図1. 動的磁気シールドの構成

2. 低周波領域におけるシールド方法

低周波領域の磁気的シールド方法の典型的な手法 は、高透磁率材料を用いた磁気シールドである。 SQUID磁束計による生体磁気計測などの応用では、磁 気シールドルームは欠かせないものとなっている^[2]。 しかし、磁気シールドルームには、磁性材料の性質上 高周波でのシールド効果に期待できず、さらに十分な シールド効果を得るには非常に高価で移動が不可能な システムになる。本研究では、比較的安価で持ち運び が可能なSQUID 磁束計を用いた動的磁気シールドシ ステムについて検討することにする。但し、動的磁気 シールドシステムも低周波域側でのみシールド効果が 有効であることから、高周波域の雑音に対しては別の シールドシステムで補完する必要がある。

動的磁気シールドシステムの構成は、SQUID磁束 計の磁束フィードバックループと同じである。図1.に 動的磁気シールドシステムの構成の概略図を示す。図 に示される検出コイル周辺に雑音除去コイルが作る磁 界が負帰還され、検出コイルのある空間でゼロ磁場に バランスする構成になっている。図1. に示すように、 均一磁界を作るためにヘルムホルツコイルを雑音除去 コイルに用いた場合、均一磁界雑音(0 次勾配の磁界) を対象として除去することになる。検出コイルの周辺 空間に比べて遠方の雑音が作る磁界は、検出コイル空 間では 0 次勾配成分を主として低次の勾配成分が支 配的である。そのため、均一磁界で打ち消される磁界 は遠方の雑音が対象となり、より高次の勾配を持つ近 傍の信号磁界は残るために、シールドシステムとして 用いることができる^[4]。

動的磁気シールドシステムの性能は、大きく分けて 主に二つの要因で決定されている。一つ目は、雑音除 去コイルの作る磁界の磁束密度均一度である。0 次勾 配の補正をする場合、磁界除去空間内に帰還される磁 界が均一であることが必要である。この均一度は静磁 界の性質に起因するので、動的磁気シールドの静特性 と呼ぶことにする。特に環境雑音は低周波領域で大き な値となるため,非破壊検査や土壌インピーダンスの 微小磁界計測を行う場合には,80~100 [dB] 程度の 磁界除去性能が要求される。

二つ目のシールド性能の決定要因は,フィードバッ ク系の伝達特性である。伝達関数は周波数により変化 する。従って,この特性で決められるシールド性能は 周波数に依存し,動的磁気シールドの動特性と呼ぶこ とにする。応用によって要求される周波数領域は異な るが,土壌インピーダンスの計測では数百 [kHz] 程度 の比較的高周波までのシールド性能の動特性が要求さ れる。以下に,動的磁気シールドの静特性と動特性の それぞれについて検討を行う。

2.1. 動的磁気シールドの静特性に関する検討

動的磁気シールドの雑音除去コイルのつくる磁界 の空間変化は、検出コイルの配置される計測空間内で いかに均一な静磁界を作れるかを決定している。従っ て、計測空間に比べて非常に大きな雑音除去コイルを 作成すると均一度は良くなり、シールド性能は向上す ることになる。ところが、屋外での可搬性を考慮する 場合、動的磁気シールドの雑音除去コイルはできるだ け小さいことが望ましい。そこで、今回のコイル設計 に際しては、最小限の寸法で計測空間内の均一度を高 くする方法を検討する。但し、雑音除去コイルの設計 の前提条件として今回の実験で使用するデュワー(図2 (a)参照)が入らなければいけない。デュワーが入り、 最小限のサイズとなることを設計目標として寸法を決

 (a) ヘルムホルツコイルで構成した磁気雑音除去コイル(一辺の長 さ 420mm コイル間隔 210mm)

(b) 付加的磁気補正コイル付きの磁気雑音除去コイル(外側コイル:一辺の長さ460mm コイル間隔246.8mm 内側コイル:一辺の長さ369.3mm コイル間隔210mm)

める。計測空間の大きさは、検出コイルのベースライン長を一辺とする 75 [mm] の空間とした。

デュワーの最大直径は 206.5 [mm] であるので,コ イル間隔は 206.5 [mm] が最小である。試作機作成に 際して,コイル巻枠等の構造材料には,非磁性で絶縁 性の材料であり,加工が容易であることが求められる。 これらの要求事項から木材を使用する予定である。木 材の加工精度を数 [mm] 程度と考えてコイルの各寸 法を決めることにする。そこで,デュワー幅 206.5 [mm] に対して 210 [mm] をコイル間隔とする。磁気 雑音除去コイルに用いる四角形ヘルムホルツ型コイル の一辺はコイル間隔の2倍の 420 [mm] とした(図2 (a) 参照)。コイル間隔 210 [mm] コイル一辺 420 [mm] の 磁気雑音除去コイルの磁束密度均一度(*MH*)の計算 値は *MH*=3.29373×10⁻³ であった。ここで,*MH* は以 下の式で定義した。

MH を用いて,動的磁気シールドの静特性によるシー ルド性能として,シールディングファクター (SF_s) を以下の式で定義する。

$$SF_s = 20\log_{10}\left(\frac{1}{MH}\right)[dB] \tag{2}$$

ヘルムホルツ型コイルで得られる磁束密度均一度は, 式(2)より*SF*_s = 49.6 [dB] に相当し,雑音除去コイルの シールディングファクターが 80 [dB] 以上という要求 を満たしていない。すなわち,*MH*は 10⁵の桁である ことが設計目標となる。

ヘルムホルツ型コイルの構成で,最小限のサイズの 雑音除去コイルを設計する場合, 必要な均一度を得る ことができないことが判った。そこで、磁界強度の形 状を補正する目的で付加的補償コイルを追加して、磁 束密度均一度を向上する方法を検討した。ヘルムホル ツコイルの構成条件から少しずつ寸法を変化させたよ うな擬似ヘルムホルツコイルを二組使用する。図2.(b) に示されるような、外側コイルと内側コイルの二組の コイルを用いる。内側コイルのコイル間隔は前述と同 様の理由から 210 [mm] とすると、数値計算の結果か ら外側コイルは一辺の長さ 460 [mm] コイル間隔 246.8 [mm], 内側コイルは一辺の長さ 369.3 [mm] コ イル間隔 210 [mm] が最適であった。この磁気補正コ イルが発生させる磁束密度均一度の値は, MH = 2.53111×10⁻⁶ であった。(この値は SF_s=112 [dB] に相 当するので、設計目標を満たしている。)

図3. は提案する二組の磁気補正コイルが発生する

図 3. x-y 平面上の磁束密度分布図 磁気雑音除去コイルの構造は図 2. (b)参照, x-y 平面は磁気雑音除去 コイルの中心軸方向を z 軸としてそれに直交する面である。

x-y平面上の B_z の磁束密度の分布を示す(検出コイルはz軸方向のマグネトメータ)。図からわかるとおり、中央付近に均一な磁界が発生し ± 30 [mm]以上外側で急激に磁束密度が変化する。実験をする際には出来るだけ中央に検出コイルを正確に配置することが望まれる。

2.2. 動的磁気シールドの動特性に関する検討

動的磁気シールドの各要素のブロック図を図4. に 示す。図中の ϕ_n は雑音磁束を, ϕ_r は雑音除去コイル からフィードバックされる補正磁束を, ϕ_a はシールド されて残る磁束を表している。 τ_0 はSQUIDデバイス の時定数なので,他の時定数に比べて小さく無視でき る。従って,補正磁束を示す伝達関数は

$$\frac{\phi_f}{\phi_n} = \frac{1}{1 + \frac{R_f}{V_\phi G_a M_f} \frac{s \tau_1 (1 + s \tau_2) (1 + s \tau_3)}{e^{-s \pi d}}}$$
(3)

となる。ここで、 V_{ϕ} はSQUID素子の磁束-電圧変換係数、 G_a は駆動回路のアンプ全体のゲイン、 M_f は雑音除去コイルと検出コイルの相互インダクタンス、 R_f はVI変換係数、 τ_1 は積分器の時定数、 τ_2 はVI変換器、 τ_3 は雑音除去コイルの時定数、 τ_4 は雑音除去コイル 及び配線の伝送遅延(約10 [ns/m])を表している。 さらに図4.より、検出コイルで検出される磁束 ϕ_4 はであることから、

$$\phi_d = \phi_n - \phi_f \tag{4}$$

図4. 磁気シールドのフィードバック系のブロック図 動的磁気シールドにおける雑音磁束と検出磁束の伝達 特性は、式(3)と(4)より

$$\frac{\phi_d}{\phi_n} = \frac{1}{1 + \frac{V_{\phi}G_aM_f}{R_f} \frac{e^{-s\tau d}}{s\tau_1(1 + s\tau_2)(1 + s\tau_3)}}$$
(5)

となる。式(5)より動的磁気シールドの動特性のシール ディングファクター SF_d が以下のように定義できる。

$$SF_d = 20\log_{10}\left(\frac{\phi_n}{\phi_d}\right)$$
[dB] (6)

アンプと積分器及び V/I 変換器を含む動的磁気シ ールドの駆動回路の設計を行い,式(7)の *SF_d* の伝達 特性に対する評価を行った。設計した回路の主な仕様 は,積分器の時定数を $\tau_1 = 200$ [ps], 20 [ns], 2 [µs] か ら選択できるようにした。また, $\tau_2 = 10$ [µs], $\tau_3 = 1.37$ [µs], $\tau_d = 140$ [ns] として,式(7) より, *SF_d* を数値計 算した。図5. に*SF_d* の周波数特性の計算結果を示す。 その結果, $\tau_1 = 200$ [ps] のとき, 100 [kHz] 程度まで の周波数でシールド性能を実現できることが判った。 図5. 中には参考のために,静特性の *SF_s* を100 [dB] と仮定した場合のレベルも太い実線で記入してある。

図5. 動的磁気シールドの動特性 (z₂ = 10 [µs])

3. 高周波領域におけるシールド方法

本研究では、計測対象周波数帯域が 500 [kHz] ~ 1.5 [MHz] であることから、約 1 [MHz] 以上の周波数 域の高周波の環境磁気雑音は、除去する必要がある。 しかも、測定対象周波数が特定の周波数であることか ら、その周波数にあわせて、シールド可能な周波数に ある程度の可変性と、正確な遮断周波数の設計が要求 される。そこで本論文では、金属箔による電磁波シー ルドの遮断周波数を実験値と近似式の比較から明確に するとともに、シールドの遮断周波数の可変が可能な 方法について検討することにする。

本研究で対象とする電磁界は,自由空間中の平面波 で周波数帯は1 [MHz] 前後であり、特に計測対象は磁 界である。そこで、低インピーダンス界での磁界のシ ールド効果の測定手法であるスモールループコイル^[5] を採用した。この方法は、100 [Hz] ~ 20 [MHz] の周 波数帯で使用可能で、シールド材料の壁の両側近傍に 送信コイルと受信コイルを設置してシールド効果を評 価する。但し、今回のシールド効果の測定対象の金属 箔は, 図2. に示すようなFRPデュワーのテールの細い 部分の周りに設置することを想定しているため、 690 [mm],高さ300 [mm] 程度のアクリル製の円筒の周り に設置された。従って、スモールループ測定で規定さ れている Ø300 [mm] のループコイル^[5]は設置不可能 である。従って, FRPデュワーのテール Ø35 [mm] 内 に設置可能な寸法から,図6.に示すような Ø32 [mm] × 2 [turn] のコイルを送信側と受信側に用いた。両方 のコイルの中心間隔は 50 [mm], 300 [mm]の高さの円 筒シールドのほぼ中央くらいの高さに設置した。送信 側コイルには30 [Ω]の抵抗を介して発振器を接続し、 400 [Hz] ~15 [MHz] の正弦波を入力した。抵抗の両 端の電圧を測定してコイルへの入力電流をモニタして いる。一方,受信側コイルの両端の電圧は, OPアンプ

図6. スモールループ法によるシールド効果の評価 AD829による非反転増幅器を4段構成して1080倍に増

幅した後にデジタルオシロスコープで加算平均して計 測した。作成した増幅器の遮断周波数は約 6 [MHz] で ある。

シールド効果の評価は、低周波域のシールド方法と 同じ評価をするために、シールド材料がない場合の測 定値 $v_n(f)$ とシールド材を設置した場合の測定値 $v_s(f)$ より(両方の測定値は、電流のモニタ値と増幅度の周 波数特性を考慮し、 $v_n(f)$ は電磁誘導の計算値とフィッ ティングしている)シールディングファクターを

$$SF_m = 20\log_{10}\left(\frac{v_n(f)}{v_s(f)}\right) [dB]$$
(7)

と定義した。

シールド効果の計算値には,非磁性金属材料の低イ ンピーダンス界の吸収項の近似式^[5]を用い,シールデ ィングファクターの計算値 SF_c として

$$SF_c = 1.7t \sqrt{\frac{f}{\rho}} \, [\text{dB}]$$
 (8)

を用いた。ここで、 ρ はシールド材の抵抗率 [Ω m]、f は周波数 [MHz]、t はシールド材の厚さ [cm] である。

高周波領域の磁気シールドについては、各種材料に 検討すること、材料に対するスリットの影響、温度変 化によるシールド特性への影響などについて実験的に 検討した。特に、微小磁界計測応用において金属材料 の存在は熱雑音の発生源として磁界測定に制限を加え ることになる。これに対する対策として、検出コイル と熱雑音電流の磁気的結合を小さくする目的で、スリ ット状のシールドが用いられる。検出コイル近傍に設 置される場合には、金属線を板状に束ねたコイルフォ イルが用いられることもある。

まず,入手可能な各種材料のシールド効果 SF_m と式 (7)の近似式 SF_cの比較検討を行った。図7.(a)~(c) に 各種材料および温度の違いによるシールディングファ クターの周波数特性を示す。これらの結果より,抵抗 率の温度による変化,材料による抵抗率の変化,材料 の厚さの変化に対して,式(7)の低インピーダンス界の 吸収項の近似式でシールディングファクターを予想可 能であることがわかる。図7.中の1[MHz] 程度を境 にしたシールディングファクターの実験値の低下は測 定系の遮断周波数が影響していると予想されシールデ ィングファクターを反映したものではないと考えてい る。

次に、シールド効果に対するスリットの影響につい て実験的な確認を行った。使用したシールド材料は厚

図8. シールド効果に対するスリットの影響

さ 35 [µm] の銅箔テープ(幅 250 [mm]) である。 Ø90 [mm], 高さ 300 [mm] のアクリル円筒の周りに銅箔を 貼り付け、スリットはナイフエッジを用いて円筒の高 さ方向に向けて直線状に、円周上で均等に作成した。 測定は、図6.の上面図に示されるように送信コイルと 受信コイルを結ぶ中心線に対してシールドの円周上に 作成されたスリットが、1本のときに $\alpha = 180$ [deg]、2 本のとき $\alpha = 90$ [deg] というようにスリットがコイ ルから最も遠くなるように設置して測定した。図8. に 示す測定結果から、スリット数が4本以上になった場合 に極端にシールド効果が減衰することがわかった。ス リット数に従ってシールディングファクターは減少し ているため、スリットの本数に従ってシールドが効果 的となる周波数が変化しているか否かについては判断 できなかった。また、比較のために、 Ø0.3 [mm] の銅 線を用いて円筒シールドの高さ方向に密に並べたコイ ルフォイルを作成してシールド効果を調べてみた。図 8. に示されるように、この周波数範囲ではシールド効 果はまったく確認されなかった。

4. まとめ

SQUID磁束計を用いた微小磁界の計測において、 システムのダイナミックレンジとスルーレートを確保 するために適切な磁気シールドが必要となる。本研究 では、計測対象となる周波数以外の環境雑音を除去す るとともに持ち運びが可能なことを条件に、低周波領 域に動的磁気シールド法を高周波領域に導体シールド を用いることを提案し、シールド性能の検討を試みた。

動的磁気シールドは均一磁界の向上を目的に擬似 ヘルムホルツ二組のコイルを組み合わせた。この構成 によって 100 [dB] 以上のシールディングファクター の静特性が実現可能であることがわかった。また、伝 達特性の検討から、100 [kHz] 程度までの動特性が可 能であることも示した。今後は、シールド効果の実証 試験および、計測空間における環境磁界の1次勾配成分 以上を対象に動的磁気シールドの検討を進める。

導体箔シールドを用いて計測対象に適合するシー ルド材料と厚さの設計指針となる近似式の検討を行い, 金属箔からの熱雑音の影響避けるためのスリット構造 とシールド効果の関係を調べた。結果として,スリッ トがシールド性能の低下に与える影響は大きいことを 示した。今後,スリットなしで金属を薄くした場合に, 検出コイルに結合する熱雑音磁束の検討を進めるべき である。また,温度による抵抗率の変化を利用するこ とによって,シールド特性の周波数特性が大きく変化 することがわかった。今後,金属箔と液体窒素および ヒーターを組合わせて,シールド性能の遮断周波数を 可変する方法について検討を進める。

今回のシールド方法の構成は、磁気的な非破壊検査 のように特定の周波数を対象とする計測応用はもちろ ん、様々な磁界計測の応用分野でも有効な方法である といえる。

本研究は、独立行政法人科学技術振興機構(JST) による平成19年度シーズ発掘試験、課題番号01-004, で実施された受託研究による成果を中心としてまとめ られたものである。

参考文献

 [1] "SQUID Sensors: Fundamentals, Fabrication and Applications", H. Weinstock eds., Kluwer Academic Publishers, 1996
 [2] "The SQUID Handbook", J. Clarke and A. I. Braginski eds., Wiley-VCH Verlag GmbH & Co. KGaA, 2004
 [3] D. Drung, T. Radic, H. Matz and H. Koch, IEEE tras. on Appl. Super., Vol. 7, No. 2, pp3283-3286, 1997
 [4] K.Matsumoto, Y. Yamagishi, A. Wakusawa, T. Noda, K. Fujioka and Y. Kuraoka, International Congress Series 988, Biomagnetism: Clinical aspect, M. Hoke et al. eds., Elselvier science publishers B. V., pp857-861, 1991
 [5] "電磁波シールドの基礎", 友野利平他 編, シーエ ムシー, 1984