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Abstract: Let G = (V, E) be an undirected simple graph with u € V. If there
exist any two vertices in G whose distance becomes longer when a vertex u is
removed, then u is defined as a hinge vertex. Finding the set of hinge vertices in
a graph is useful for identifying critical nodes in an actual network. A number of
studies concerning hinge vertices have been made in recent years. In a number of
graph problems, it is known that more efficient sequential or parallel algorithms
can be developed by restricting classes of graphs. In this paper, we shall propose
a parallel algorithm which runs in O(logn) time with O(n/logn) processors on
EREW PRAM for finding all hinge vertices of a circular-arc graph.
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1 Introduction

Given a simple undirected graph G = (V, E) with
vertex set V and edge set E. Let G — u be a sub-
graph induced by the vertex set V —{u}. The distance
disg(z,y) is defined as the length (i.e., the number
of edges) of the shortest path between vertices z and
y in G. Chang et al. defined that v € V is a hinge
vertez if there exist two vertices z,y € V — {u} such
that disq_y(z,y) > disq(z,y) [1]. A graph without
hinge vertices is called a self-repairing graph. Farley
and Proskurowski presented a constructive character-
ization related to the class of self-repairing graphs [2].
For the design and analysis of distributed networks,
the analysis of topological properties is a very im-
portant research topic. The overall cost of commu-
nication in networks is increased if a computer cor-
responding to a hinge vertex stalls. Therefore, find-
ing the set of hinge vertices in a graph is useful for
identifying critical nodes in an actual network. A
number of studies concerning hinge vertices have been
made in recent years. A trivial O(n?) sequential algo-
rithm for finding all hinge vertices of a simple graph
is straightforwardly obtained by a result in [1], e.g.,
Theorem 1 in this paper. Furthermore, Theorem 1
leads to NC algorithms as well as efficient sequential
algorithms for finding hinge vertices in several graphs.
In a number of graph problems, it is well-known that
more efficient sequential or parallel algorithms have
been developed by restricting classes of graphs. For
instance, Chang et al. presented an O(n + m) time
algorithm for finding all hinge vertices of a strongly
chordal graph [1]. Ho et al. presented a linear time al-
gorithm for finding all hinge vertices of a permutation
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graph [3]. We have presented a parallel algorithm,
which runs in O(logn) time with O(n) processors
on CREW (Concurrent-Read Exclusive-Write Paral-
lel Random Access Machine), for finding all hinge ver-
tices of an interval graph [4] and a trapezoid graph [5],
respectively. Recently, an optimal parallel algorithm
for interval graphs was proposed by Hsu et al. [6]
which runs in O(logn) time with O(n/logn) pro-
cessors. However, no efficient parallel algorithm for
finding all hinge vertices of a circular-arc graph [7]
has been presented. Problems that can be solved
efficiently for interval graphs or trapezoid graphs
may not always be solvable efficiently for circular-
arc graphs. For example, the coloring problem can
be solved efficiently for interval graphs (see e.g., [§]
for a sequential algorithm and [9] for a parallel algo-
rithm) or trapezoid graphs (see e.g., [10] for a sequen-
tial algorithm and [11] for a parallel algorithm), how-
ever, it is NP-hard for circular-arc graphs [12]. For-
tunately, the problem of finding all hinge vertices is
also solvable efficiently for a circular-arc graph, as will
be seen in this paper. We shall propose an optimal
parallel algorithm which runs in O(logn) time with
O(n/logn) processors on EREW PRAM (Exclusive-
Read Exclusive-Write Parallel Random Access Ma-
chine) for finding all hinge vertices of a circular-arc
graph.

2 Definition

We first illustrate the circular-arc model before defin-
ing the circular-arc graph. Consider a unit circle C
and a family A of n circular-arcs A;, As, ..., A, along
the circumference of C. Each circular-arc 4; has two
endpoints, left endpoint a; and right endpoint b;, re-
spectively, and is denoted by A; = [a;,b;]. The left
endpoint a; (resp., right endpoint b;) is the last point
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Figure 2: Circular-arc graph G.

of A; that we encounter when walking along A; coun-
terclockwise (resp., clockwise). Without loss of gen-
erality, the coordinates of all left and right endpoints
are distinct and are assigned clockwise with consecu-
tive integer values 1,2, ...,2n. The circular-arc num-
bers i, 7 are assigned to each circular-arc in increas-
ing order of their right endpoints b;’s, i.e., A; < A;
if b; < b;. Note that circular-arc A; with a; > b;
is called a feedback circular-arc. The geometric rep-
resentation described above is called a circular-arc
model. Figure 1 illustrates a circular-arc model C'M,
consisting of eleven circular-arcs (note that A, and
Ajz are feedback circular-arcs).

A graph G = (V,E) is called a circular-arc
graph if there exists a family of circular-arcs A =
{Ay, Ay, ..., A, } such that there is a one-to-one cor-
respondence between vertex ¢ € V' and the circular-
arc A; € Ain such a way that an edge (i, j) € E if and
only if A; intersects with A; in CM. Figure 2 illus-
trates the circular-arc graph G corresponding to C M
shown in Fig. 1. In this example, all hinge vertices of
G are vertices 2, 6, 7 and 10.

We next introduce an eztended circular-arc model
constructed from a CM for making the problem eas-
ier. We first cut CM at endpoint 1 and next un-
roll onto the real horizontal line. Each circular-arc

A; =la;,b;] in CM is also changed to horizontal line
segment I; = [a;, b;] called interval by executing the
above process. Also, Iy, = [a; + 2n,b; + 2n] is de-
fined as a dummy interval of I;, and is often denoted
by I, for convenience. When some A; = [a;, b;] is a
feedback circular-arc in CM, circular-arc A; = [a;, b;]
is changed to interval I; = [a; — 2n, b;], and a dummy
interval I;y,(I4(;)) = [ai, bi + 2n] is added on ECM.
Figure 3 shows the extended circular-arc model EC M
constructed from the circular-arc model CM illus-
trated in Fig. 1. When no feedback circular-arc exists
in CM, ECM is equivalent to the interval model [§],
that is, the circular-arc graph G corresponding to C M
belongs to the class of interval graphs. In this case,
this problem can be solved by applying the algorithm
for finding all hinge vertices of an interval graph [6].

In what follows, we define some functions and terms
used in this paper. For I; in ECM, M(i) is the
interval number j such that interval I;(j > i) is
the largest one intersecting with I;. Similarly, for
I; in ECM, SM(i) is the interval number j such
that I;(j > 4) of the second largest one intersect-
ing with I;. When such interval I; does not exist,
let M (i) =i and SM (i) = i, respectively. Formally,
M (i) = max{j | I; contains b;} and SM (i) = max{i,
smax{j | I; contains b;}}, where, smax is the func-
tion that denotes the second largest element in a set.
Also, for 1 < i < n, we define D(i) = {k | bsr(i) <
k < b,k € N}. Table 1 shows M (i), SM (i) and
D(i) for ECM illustrated in Fig. 3.

In the followings, we define MV = {M (i) | D(i) #
0,1 <i < n}, where MV has no multiple element. In
the example shown in Table 1, MV = {6,7,10,13}.
Also, we define MV; = {i | M(i) = j,1 <i < n}
for all j € MV. For instance, MVg = {1,2}, MV; =
{3,4}, MVyp = {6,7,8,9} and MVi3 = {10,11} in
Table 1. For all j € MV, represent verter R; of
MYV; is defined as the minimum value element of
MV;, that is, R; = min{i | i € MV;}, j € MV.
Moreover, represent vertex set (RVS) is defined as
a set consisting of all represent vertices R;, that is,
RVS ={R; | j € MV}. In the example of Table 1,
Rs =1, Ry = 3, Rip = 6 and Ry3 = 10 for MV,
MVz, MVig and MVi3, respectively, and RV S =
{1,3,6,10}. Also, we define Dgrys = UjervsD(j),
that is, Drys = D(1) U D(3) U D(6) U D(10) =
{8,9,10,11,12, 14,17, 18, 20, 21, 22, 23, 24, 25}

Next, for k € Dgrvs, la(k) and ra(k) are defined as
follows. la(k) = i when there exists some i(1 <17 < n)
that satisfies a; + 2n = k. ra(k) = ¢ when there
exists some (1 <7 < n) that satisfies a; = k. In the
example of Table 1, la(18) = 2 since a; + 2n = k for
n=11,i=2and k = 18 € Dgys. ra(12) = 10 since
a; =k fori =10 and k =12 € Dgrys.

Moreover, for k € Dgrys, p(k) is defined as fol-
lows. p(k) = m where a,, is the maximum value
of all a; satisfying k¥ € D(i). Formally, p(k) = m
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Figure 3: Extended circular-arc model EC'M.

Table 1: Details of arrays M (i), SM (i), D(i) for ECM illustrated in Fig. 3.

i 1 2 3 4 5 6 7 8 9 10 11 13(d(2)) 14(d(3))
a; 1 1 0 5 9 2 6 10 14 12 20 18 22
bi 3 4 7 8 11 13 15 16 17 19 21 26 29
M%) 6 6 77 8 10 10 10 10 13(d(2)) 13(d(2)) 14(d(3)) 14(d(3))
SM(i) 3 3 6 6 7 8 9 9 9 10 11 13(d(2))  14(d(3))
D@E) | 8,02 8,.,2 14 14 @ 17,18 18 18 18 20,.25  22,..25 - -

iff a, = max{a; | £k € D(i)}. In the example
of Table 1, p(18) = 9 for k = 18 € Dgyg, since
18 € D(6)ND(7)ND(8)ND(9) and ayg is the maximum
value among ag = 2, ay = 6, ag = 10 and ayg = 14.
Table 2 shows details of arrays of la(k), ra(k) and p(k)
for k € Dgys.

3 Some Properties the

Hinge Vertices

on

Theorem 1 [1] due to Chang et al. characterizes the
hinge vertices of a simple graph. We apply this theo-
rem for finding efficiently the hinge vertices of a given
circular-arc graph.

Theorem 1 For a graph G = (V, E), a vertexu € V
is a hinge vertex of G if and only if there exist two
nonadjacent vertices x,y such that u is the only vertex
adjacent with both x and y in G. O

For simplicity, we say, throughout this paper, that
u is the hinge vertex for  and y when the condition
in Theorem 1 is satisfied. The following corollary 1
is derived immediately from Theorem 1, therefore the
proof is omitted.

Corollary 1 Let CM be a circular-arc model, and
let G = (V,E) be a circular-arc graph corresponding
to CM. We assume that vertices u,z,y(x <y) € V
in G correspond to circular-arcs Ay, A, Ay(z < y) in
CM, respectively. Then, a vertex u is a hinge vertex
for x and y in G if and only if A, does not intersect
with Ay, and A, is the only circular-arc intersecting
with both A, and Ay in CM. O

Corollary 2 Let CM be a circular-arc model, and
let G = (V,E) be a circular-arc graph corresponding
to CM. We assume that vertices u,z,y(x <y) € V
in G correspond to circular-arcs Ay, Az, Ay(z < y)

in CM, respectively. ECM is an extended circular-
arc model constructed from CM. Furthermore, the
interval I,y = [az +2n,b, +2n] is a dummy interval
of I, in ECM. Then, a vertex u is a hinge vertex
for x and y of G if and only if neither I, nor Iy,
intersects with I,,, and at least one of the following
four conditions holds in ECM .

1. I, is the only interval intersecting with both I,
and I, and there ezists no interval (except I, or
Lyeuy) intersecting with both I, and I;(,).

2. Id(u) is the only interval intersecting with both I,
and I;, and there ezists no interval (except I,, or
Lycuy) intersecting with both I, and I().

3. I, is the only interval intersecting with both I,
and Iy(,), and there exists no interval (except I,
or Iyy)) intersecting with both I, and I,,.

4- Lqcu) is the only interval intersecting with both I,
and Iy, and there exists no interval (except I,
or Iy(y)) intersecting with both I, and I,. O

In the followings, we shall describe lemmas charac-
terizing hinge vertices in a circular-arc graph. Here-
after, for simplicity, we often denote I, < I, the rela-
tion between two intervals I, and I, with z < y when
no confusion may arise.

Lemma 1 Let CM be a circular-arc model, and let
G = (V,E) be a circular-arc graph with u,z,y(z <
y) € V corresponding to CM. Also, let ECM be
an extended circular-arc model constructed from C M .
Assume that u is a hinge vertex for x and y of G.
Then, at least one of the following four cases holds.
Ty = In(eys Tawy = In(eys Tu = Iugy) and Io) =
Iy in ECM.

(Proof) At least one of the conditions 1, 2, 3 and 4
of Corollary 2 is satisfied since u is a hinge vertex
for  and y of G. Now, suppose that condition 1 of



Table 2: Details of arrays la(k), ra(k), p(k) for k € Dpys.

k € Drys 8 9 10 11 12 14 17 18 20 21 22 23 24 25
la(k)) * * * * * * * 2 * * 3 1 6 *
ra(k) * 5 8 * 10 9 * * 11 * * * * *
p(k) 1 1 1 1 1 4 6 9 10 10 11 11 11 11
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Figure 4: Example for Lemma 1.

Corollary 2 holds, that is, neither I, nor Iy, inter-
sect with I,, I, is the only interval intersecting with
both I, and I, and there is no interval (except I, or
I4(uy) intersecting with both I, and Iy,) in ECM.
Assume, to the contrary, I,, # Ij() in ECM. This
means that there exists some I, (u < v) intersecting
with both I, and I,. This, however, contradicts the
fact that I, is the only interval intersecting with both
I, and I,. Thus, I, = Ip;,) when condition 1 of
Corollary 2 holds (see Fig. 4).

Similarly, [d(u) = IM(w): Iu = [M(y) and Id(u) =
Ips(y) hold when conditions 2, 3 and 4 of Corollary 2
are satisfied, respectively. Therefore, at least one of
the following four cases. I, = Inf(x), La(u) = Im(a)s
I, = Iny) and Iy, = Ingy) in ECM when u is a
hinge vertex for z and y of G. O

Lemma 2 Let CM be a circular-arc model, and let
G = (V,E) be a circular-arc graph with u,z,y(xz <
y) € V corresponding to CM. Also, let ECM be
an extended circular-arc model constructed from C M.
Assume that w is a hinge vertex for x and y of G.
Then, at least one of the following four conditions
holds in EC'M.

1. I, = IM(;E), ay € D(z) and ifIM(z) # IM(y) then
bri(y) < @z + 2n otherwise bspry) < az + 2n.

2. Id(u) = IM(z); ay € D(:L’) and if IM(z) 75 IM(y)
then byr(y) < az+2n otherwise bsyr(y) < az+2n.

8 L. = Iy, az +2n € D(y) and if Iy #
IM(d(z)) then bM($) < a, otherwise bSM($) < Qy.

4 Tywy = Ing(yy, ae +2n € D(y) and if Ingy) #
In(d(e)) then byrey < ay otherwise bspy(z) < ay-

(Proof) At least one of the conditions 1, 2, 3 and 4
of Corollary 2 is satisfied since u is a hinge vertex for
z and y of G. We show that condition 1 of Lemma 2
holds if condition 1 of Corollary 2 is satisfied. Suppose
that condition 1 of Corollary 2 holds, that is, neither
L. nor Iy, intersect with I, I, is the only interval
intersecting with both I, and I, and there is no inter-
val (except I, or Iy,)) intersecting with both I, and

a, |, b, a I, b, a#2n Iy, b+2n
P A freseeeaeees
':Sf(xj - _t?swm '_sm_(y_) ) Bauy)
| 1= = lug |

(0) 1,= huw= lug & in D(X) and b, < a,+2n

Figure 5: Illustration of Lemmas 2 and 3.

Ijp) in ECM. b, < ay is immediately derived since
I does not intersect with I,,. Also, ay < bas(,) since
I,, intersects with both I, and I, and I, = Iy (a)
by Lemma 1. Next, to the contrary, assume that
bsar(z) > @y, then Igpp(e) intersects with both I,
and I,. This, however, contradicts the fact that I,
is the only interval intersecting with both I, and I,.
Thus, bsym(z) < ay < by(a), 1., ay € D(z). In
what follows, consider the case of I,y # In(y) (see
Fig. 5-(a)). Suppose that there exists dummy interval
Ly(z)y = [az +2n,b, + 2n] of I.. If byr(y) > az + 2n,
Iy intersects with both I, and I4,). This contra-
dicts condition 1 of Corollary 2 that there is no inter-
val (except I, or Iy,)) intersecting with both I, and
Iy(2), hence, byr(y) < az +2n. Next, consider the case
of Ing(z) = In(y) (see Fig. 5-(b)). If bgary) > a.+2n,
Isn(y) intersects with both I, and I4(,). This con-
tradicts condition 1 of Corollary 2 that there is no
interval (except I, or Iy()) intersecting with both
I, and Iy, hence, bsy(y) < az + 2n. Therefore,
condition 1 of Lemma 2, “I, = Iy, ay € D(x)
and if Ipr(.) # Iy then b,y < az + 2n otherwise
bsa(y) < @z + 2n” in ECM holds if condition 1 of
Corollary 2 is satisfied.

In a similar manner, conditions 2, 3 and 4 of
Lemma, 2 hold when conditions 2, 3 and 4 of Corol-
lary 2 are satisfied, respectively. O

Lemma 3 Let CM be a circular-arc model, and let
G = (V,E) be a circular-arc graph with u,z,y(z <
y) € V corresponding to CM. Also, let ECM be
an extended circular-arc model constructed from C M .
Vertex u is a hinge vertez for x and y of G if and only



if at least one of the following four conditions holds
in ECM.

1. I, = IM(w)7 ay € D(z) and ifIM(w) # IM(y) then
bM(y) < agp + 2n otherwise bSM(y) < ag + 2n.

2. Id(u) = IM(z); ay € D(:L’) and if IM(z) 75 IM(y)
then byr(y) < az+2n otherwise bsyr(y) < az+2n.
3. I, = IM(y); a, +2n € D(y) and if IM(y) #
Ini(a(e)) then baray < ay otherwise bspr(z) < ay.

4. Lowy = Imy), e +2n € D(y) and if Iny) #
In(d(e)) then barey < ay otherwise bspy(z) < ay-

(Proof) Necessity (=) obviously holds by Lemma 2.
Thus, we only prove sufficiency (<).

We show that u is a hinge vertex for x and y if con-
dition 1 of Lemma 3 is satisfied. Assume that there
exist intervals I,, I, Iy (z < y) and a dummy interval
Li(z) = [az +2n,b, +2n] in ECM. It is obvious that
be < ay by “ay € D(z),” ie., “bsn(a) < ay < bar(a).”
Also, clearly, b, < a; + 2n by “byry) < az + 2n”
or “bSM(y) < agp + 2n.” These mean that neither I,
nor Iy, intersect with I,. Next, I, intersects with
both I, and I, by “I, = Iy)” and “ay € D(z),”
moreover, any interval less than Ins,) does not in-
tersect with both I, and I,. This implies that I, is
the only interval intersecting with both I, and I,,. At
this point we distinguish two cases of “Ips(,) # Ipr(y)”
and “IM(w) = IM(y)-” In the case of IM(w) IM(y):
there exists no interval intersecting with both I, and
Li(z) if bar(y) < @z + 2n (see Fig. 5-(a)). Moreover,
in the case of Inf.) = Inr(y), there exists no inter-
val (except I, or Iy,)) intersecting with both I, and
Ly(z) if bsar(y) < az + 2n (see Fig. 5-(b)). These im-
ply that condition 1 of Corollary 2 holds if condition
1 of Lemma 3 is satisfied, that is, vertex u is a hinge
vertex for r and y.

Similarly, conditions 2, 3 and 4 of Corollary 2 hold
when conditions 2, 3 and 4 of Lemma 3 are satisfied,
respectively. Therefore, u is a hinge vertex for x and
y when at least one of the conditions 1, 2, 3 and 4 of
Lemma 3 holds. O

An example where vertex 6 is recognized as a hinge
vertex in circular-arc graph G illustrated in Fig. 2 by
applying condition 1 of Lemma 3 is shown as follows.
Assume that I, = Iy, then I, = Inray = Iy = Is
and D(z) = D(1) = {8,9,10,11, 12}. Here, we search
some y satisfying that a, € D(z) and z < y, then,
we can find such y’s that y = 5, 8 and 10. Note
that y’s satisfying that a, € D(z) = {8,9,10,11, 12}
can be obtained by accessing ra(k) for all k € D(z)
immediately, for example, ra(9) = 5, ra(10) = 8 and
ra(12) = 10. Finally, we check whether the following
statement holds: if Ins(z) # Inr(y) then bar,) < a. +
2n otherwise bsps(y) < a. + 2n for all pairs of z =1
and y = 5,8,10. For the pair of x = 1 and y = 5,
vertex u = M (x) = M (1) = 6 is recognized as a hinge

vertex since “Inre) # In(y) and bary) = 13 < az +
2n = 23” holds. Similarly, for the pair of x = 1 and
y = 8, a vertex u = 6 is recognized as a hinge vertex
since “IM(w) # IM(y) and bM(y) =19< a,+2n =23”
holds. However, for the pair of z = 1 and y = 10,
“Int(2)y # Iy and bary) < @z +2n = 23”7 is not
satisfied by bas(,) = 26. Hence, vertex 6 is not a hinge
vertex for z = 1 and y = 10. In this way, all hinge
vertices of G' can be found. However, we must check
whether at least one of the four conditions of Lemma 3
is satisfied or not for all pairs of z and y (z < y).
This takes O(n®) time in the worst case. Thus, we
shall propose a more efficient procedure to find all
hinge vertices. The following lemmas are useful for
this purpose.

Lemma 4 Let CM be a circular-arc model, and let
G = (V,E) be a circular-arc graph with ©,,z5 €
V' corresponding to CM. Also, let ECM be an
extended circular-arc model constructed from CM.
Then, M(z1) < M(x2) and SM(x1) < SM(x2) for
two intervals I,, < I, in ECM.

(Proof) Assume, to the contrary, that M(z;) >
M (x3), i-e., bar(e;) > Dar(ay) for two intervals I, <
I.,. Then, there exists an interval Ins(,,) that are
larger than Ip;(.,) and intersects with interval I,.
This contradicts the fact that Ips(,,) is the largest
interval intersecting with I,. Similarly, assume, to
the contrary, that SM (z1) > SM(z2), i.e., bsrr(e,) >
bsn(as) for two intervals I, < I,,. Then, there ex-
ist two intervals Isar(.,) and Ips(.,) that are larger
than Isar(.,) and intersect with interval I,. This
contradicts the fact that Isps(.,) is the second largest
interval intersecting with I.,. Thus, M (z1) < M (z2)
and SM (z1) < SM(z3) for two intervals I, < I, in
ECM. O

Lemma 5 Let CM be a circular-arc model, and let
G = (V,E) be a circular-arc graph with z1,z2(z1 <
x2) € V corresponding to CM. Also, let ECM be
an extended circular-arc model constructed from C M .
Then, D(x1) D D(x2) if M(x1) = M(x2) for two
intervals I, < I, in ECM.

(Proof) D(z1) = {k | bsp(ar) < k < brr(ay), k € N'}
and D(l‘z) = {k? | bSM(l‘Q) <k< bM($2),k € N} by
the definition of D(i). Obviously bar(z,) = bn(as)
by the assumption that M(z1) = M(xz2). Also,
bSM(:::l) < bSM(:::z) since I,, < I., in ECM by
Lemma 4. Hence, D(z1) D D(z») if M(z1) = M (z2)
for two intervals I, < I, in ECM (see Fig. 6). O

The implication of Lemma 5 is as follows. In order
to verify whether a vertex u is a hinge vertex, we now
test if condition 1 of Lemma, 3 holds or not. So far, we
must try to find y's satisfying that a, € D(z) for all
x such that I, = Ips(,). Now, suppose that M (z;) =
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Figure 6: Illustration of Lemma 5.
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Figure 7: Illustration of Lemma 6.

M(ze) == M(zm) =uforz; <x2 <+ < T,
that is, x; is a represent vertex of MV,. Then, by
Lemma 5, a, € D(xz;) since D(z;) D D(x;) if ay, €
D(zj) for x; < x;. This means that it is sufficient
to check whether there exists y satisfying that a, €
D(z) for a represent vertex x1 of MV, in the case of
M(z1) = M(z3) = --- = M(z,,) = u. Hence, we may
only apply condition 1 of Lemma 3 for all represent
vertices z € RV'S to check whether u = M(z) is a
hinge vertex or not. The number of times for applying
condition 1 of Lemma 3 is D, py ¢ [D(i)| = |[Drvs]|.

Lemma 6 Let CM be a circular-arc model, and let
G = (V,E) be a circular-arc graph with x1,x2(z1 <
x2) € V corresponding to CM. Also, let ECM be
an extended circular-arc model constructed from C M.
Then, either M (x1) = M(z2) or D(z1) N D(x2) =0
for two intervals I, < I, in ECM.

(Proof) Assume, to the contrary, that M(z) #
M(z2) and D(xz1) N D(z2) # 0 for two intervals
I,, < I, in ECM. We may only consider the case
of M(z1) < M(x2) since the case of M (x1) > M (x2)
never happens by Lemma 4. By the definition of D (i),
D(zy) = {k | bSM(zl) < k< bM(wl),k‘ € N} and
D(z2) = {k | bSM(:cz) < k< bM(h),k € N'}. Now,
bM(zl) < bM(wz) by M(z1) < M(z3), and bSM(:::l) <
bsn(zs) Dy Lemma 4. Also, bsar(z,) < bar(z,) when
D(z1) N D(x2) # O (see Fig. 7). Then, there exist
two intervals Ins(,,) and Ips(.,) that are larger than
Isp(ay) and intersect with I,,. This contradicts the
fact that Isps(.,) is the second largest interval inter-
secting with I,,. Thus, either M(z1) = M(z2) or
D(z1) N D(z2) = 0 for two intervals I,, < I, in
ECM. O

The implication of Lemma 6 is as follows. D(z1)N
D(z3) = 0 since M(z1) # M(z2) for two ver-
tices @1, x2(r1 < x2) € RVS. This means that
all elements of D(i),i € RV S are distinct, that is,

Yicrvs D) = [Drvs| < 2n. Hence, the number
of times for applying each of conditions 1, 2, 3 and 4
of Lemma 3 to find all hinge vertices is O(n).

So far, we presented a necessary and sufficient con-
dition for recognizing a hinge vertex of a circular-arc
graph G in Lemma 3. We further observe that com-
plexity is improved by applying Lemmas 5 and 6. The
number of times for applying the necessary and suffi-
cient condition of Lemma 3 is O(n).

However, we must be more careful when we im-
plement an algorithm employing the necessary and
sufficient condition of Lemma 3 for finding all hinge
vertices of G. We show an example that a hinge ver-
tex is not recognized correctly. Suppose that we check
whether vertex 10 is a hinge vertex or not by applying
condition 3 of Lemma 3 in an example shown in Ta-
ble 1. We now choose y = 6 by RV S = {1, 3,6, 10},
then v = M (y) = M(6) = 10. Next, we search z sat-
isfying that a, + 2n € D(y) = D(6) = {17,18} and
n = 11, then we can find x = 2 satisfying a»+22 = 18.
Here, such z’s satisfying that a, + 2n € D(y) =
{17,18} can be obtained by accessing la(k) for all
k € D(y) immediately, that is z = la(18) = 2. Now,
M(y) # M(d(z)) by M(y) = 10 and M(d(z)) = 14.
Hence, if by() < ay for z =2 and y = 6, u = 10 is
recognized as a hinge vertex of G by condition 3 of
Lemma 3. At this point, by b2y = 13 > 2 = ag,
condition 3 of Lemma 3 is not satisfied, then vertex
10 is not recognized as a hinge vertex of G. However,
vertex 10 is in fact a hinge vertex for vertices 2 and
9 in G. We explain the reason by using Fig. 8, why
this contradiction is occurred. At the first step, we
choose y = 6 from RVS = {1,3,6,10} and found
z = 2 satisfying that a, + 2n = 18 € D(y) =
D(6) = {17,18}. However, vertex u is not recog-
nized as a hinge vertex since byr(2) < ay is not sat-
isfied (see Fig. 8-(a)). Here, we pay attention that
y satisfying as + 2n = 18 € D(y) is not only 6,
but 7, 8 and 9 also satisfying a2 + 2n = 18 € D(y)
(D(7) = D(8) = D(9) = {18}). If there exists y sat-
isfying bas(2) < ay among y’s (y = 6,7,8,9) satisfying
that az + 2n = 18 € D(y), a vertex u is recognized
as a hinge vertex for  and y. Therefore, we must
choose m as y such that a,, is the maximum value of
{a; | 18 € D(i)}. For an example shown in Fig. 8-(b),
i = 9 is chosen as y by ag = 2, ay = 6, ag = 10 and
ag = 14 for 18 € D(i) (that is, i = 6,7,8 and 9).
Then, I, = Io = In(y), @z +2n =18 € D(y) = {18}
and byy(,) = 13 < 14 = a, fory = 9 and = = 2, hence,
vertex 10 is correctly recognized as a hinge vertex for
vertices 2 and 9. We describe how to choose y again.
We must not directly choose some element j of RV.S
as y. We must choose j as y such that a; is the maxi-
mum value of all a; satisfying k € D(i) for k € Dgys.
Note that such y can be obtained by accessing p(k)
immediately, for example, p(18) = 9.
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Figure 8: Example for how to find a hinge vertex w.

Hence, the necessary and sufficient condition for
a hinge vertex described in Lemma 7 is replaced as
follows.

Lemma 7 Let CM be a circular-arc model, and let
G = (V,E) be a circular-arc graph with z,y(x < y) €
V' corresponding to CM. Also, let ECM be an ex-
tended circular-arc model constructed from CM . Ver-
tex uw is a hinge vertex for x and y of G if and only
if one of at least one of the following four conditions
holds for k € Dgrygs in ECM.

1. y=rak), x = p(k), u= M(z), and if M(x) #
M (y) then by < ae + 2n otherwise bgnr(yy <
az + 2n.

2.y = ra(k), = = pk), dlu) = M(z), and if
M(xz) # M(y) then byr(y) < a. + 2n otherwise
bSM (y) < 0z + 2n.

5. @ = la(k), y = p(k), u = M(y), and if M(y) £

M(d(z)) then bys(z) < ay otherwise bsar(z) < ay.

4. = la(k), y = p(k), du) = M(y), and if
M(y) # M(d(z)) then byr) < ay otherwise
bSM(z) < Qy.

4 Algorithm

We introduce a parallel algorithm PHYV for finding all
hinge vertices of a circular-arc graph as follows.

Algorithm PHV

Input: [a;,b;], 1 <i < n, coordinates of left and right
endpoints of circular-arcs A; in C M.
Output: The set HV of all hinge vertices.
HV :=0.

Initially,

Step 1 (Construction of ECM)

Step 2 (Construction of M (i), SM (i) and D(3))

Step 3 (Construction of MV (i), RVS and Dgys)
Make an array MV (1..n)
/* construction of MV (i) */
For all 7, 1 < < n, in parallel do
MV(@i):=0
If D(i) # 0 then
MV (M(i)) = (i) U {i}
End parallel
/* construction of RV S and Dgrys */
RVS :={1}
DRVS = D(].)
For all 7, 2 <i < n, in parallel do
If (M(i—1)# M(®i)) A(D(i) # ) then
RVS := RVSU{i}
Dprys := Drys U D(i)
End parallel

MV(M

Step 4 (Construction of la(k), ra(k))
[ :==min{a; | I; in ECM}
r:=max{a; | [; in ECM}

ld = min{i | 1€ DRVS}
rd = max{i | 1€ DRVS}
Make arrays la(ld..rd) and ra(ld..rd)
For all k, k € Dgrys in parallel do
/* construction of la(k)
If AUX;5(k) # 0 then la(k) :=
/* construction of ra(k)
If AUXg(k) # 0 then ra(k) := AU X4(k)
End parallel

AUX;5 (k)

Step 5 (Construction of p(k))
Make arrays AU X~(1..n), AUXs(1..n) and p(1..2n)
For all v € RV S in parallel do
I(v) == min{MV (v)}
r(v) := max{MV(v)}
/* parallel prefix max computation */
For all i, [(v) < i < r(v) in parallel do
AU X7(i) = max{ay(v), 1(v)+1s - - i}
End parallel
For all i, I(v) <i < r(v) — 1 in parallel do
AUXg(i) :==D(#)\ D(i + 1)
End parallel
AU Xg(r(v)) := D(v)
End parallel
For all i, AUXg(i) 20,1 <i < n in parallel do
For all k € AUXj3(i) in parallel do
End parallel
End parallel

Step 6 (Finding all hinge vertices)
For all k, k € Dgrys in parallel do
y:=ra(k), z := p(k), u:= M(x)
TF {(M(2) # M(y)) A (barcy) < e +20)}
V{(M(z) = M(y)) A (bsar(y) < az +2n)}
then HV := HV U {u}



y = ra(k), o = p(
If {(M(z) £ M(y) A (bargy) < a0 +20)}
V{(M(z) = M(y)) A (bsrr(y) < az +2n)}
then HV := HV U {u}
z = la(k), y = p(k), u:= M(y)
If {(M(y) # M(d@) A (bare) < ay)}
VI(M(y) = M(d(@)) A (bsargy) < a))
then HV := HV
z = la(k), y = p(k), d(u) = M(y)
TF {(M(y) # M(d(@)) A (bare) < ay)}
VI(M(y) = M(d(x))) Absargy) < ay)}
then HV := HV U {u}
End parallel

After executing Step 6, HV consists of the set of
all hinge vertices of G.

End of Algorithm PHV

;6), d(u) := M(z)

T

We shall describe details of parallel algorithm PHV
and analyze the complexity. Parallel algorithm PHV
finds all hinge vertices of a circular-arc graph G based
on the necessary and sufficient condition for a hinge
vertex described in Lemma 7. At first, we assume
that the circular-arcs in CM are already sorted with
respect to values of endpoints b’s. In Step 1, we con-
struct ECM from C'M. This step are computed in
O(1) time using O(n) processors, which can be im-
plemented in O(logn) time using O(n/logn) proces-
sors by applying Brent’s scheduling principle [13]. In
Step 2, we compute M (i), SM (i) and D(i) for i,
1 <4 < n. This step can be implemented in O(logn)
time with O(n/logn) processors by applying paral-
lel prefix computation [14]. In Step 3, we construct
MV (i), RVS and Dgrys. This step can be imple-
mented in O(logn) time with O(n/logn) processors
by applying Brent’s scheduling principle. In Step
4, we construct arrays la(k) and ra(k), k € Dgys.
This step can be executed in O(logn) time with
O(n/logn) processors by applying Brent’s schedul-
ing principle. In Step 5, we construct array p(k),
k € Drys. By initializing AU X5 (i) := D(i)\D(i+1),
elements of AU X3(i) for 1 < i < n becomes distinct,
and we can obtain p(k) in O(n) work complexity in
last ‘For’ statement. Thus, this step can be imple-
mented in O(logn) time with O(n/logn) processors
by applying parallel prefix computation. In Step 6
we find all hinge vertices by applying a necessary and
sufficient condition of Lemma 7. This step can be ex-
ecuted in O(logn) time with O(n/logn) processors.
The concurrent reading and writing are not used any-
where. Hence we have the following theorem.

Theorem 2 Given a circular-arc graph G, Algo-
rithm PHYV finds the set of all hinge vertices of G in
O(logn) time using O(n/logn) processors on EREW
PRAM. O

5 Concluding Remarks

In this paper, we have presented an optimal parallel
algorithm for finding all hinge vertices of a circular-
arc graph. When the graph is given in the form of
a family of n arcs on a circle, our algorithm runs in
O(logn) time with O(n/logn) processors in EREW
PRAM model. In the future, we are interested in
solving this problem on some special graphs such as
circle graphs, circle trapezoid graphs and so on.
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