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Abstract

W review the new pavameter trasformation we presated o the previos papers ten yeas
ago, We show several structioes of this transformation. Further using this parameter trasfor-
meation we caleulate the vertex fumetion in Fey umen lutegrals to obtais the anomalows magnetic
et of an on=shell gquark i the scleme of the perturbative QO tleory and the dimen-
slonal reguladzatioa. A we perform tle same calenlation by using the heawtiful beallin Barmes
e prese ntation metlod and compare the result of this calenlation to the one by wing our new

transfonmation metlssd.
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1 Introduction

Recently many important results hase been ob-
tained in high energy physics incduding the de-
tection of Higgs bosom owing to the operation of
LHC and LEP at CERN.

When we try to compare the theory, especally
OO, with such data and predict the new plie-
notnena, we have to caloulate Feymman integrals
finally, Ten years ago we proposed the new pa-
rameter trapsformation and the method to cal-
culate the Feymman propagators,  Many parti-
cle physicists have vsed this method partially
to caleulate Feymman propagators,  After that
a lot of methods were discovered to caleulate
the propagators within the dimensional regular-
ization theory, that is, (i} the negative dimen-
gion method|1][2] (i} the epailm expansion tech-
nigue|d| (iii] the method applying the Melin
Barnes representation|4)[5] (iv) the method ns-

ing hyper geonetric functioms|6]|7], and so0 on.
Tutil now we had two ways to caloulate Feyu-
mam  integrals simply, the =0 called Feyn-
man paranetrization method and Schwinger's
parametrization method. Furthermore we found
the new parameter transformation and its inbe-
gral method in the previous paper[8][9]. This
new paraneter transformation was what we
solve Schwinger's parametrization =@ = all —
Al.y = o3 in reverse and generalize the solu-
tioms a6 = x4+ 9.3 = ﬁ We conld shur that
the results of the caleulations coneerning Feyu-
man integrals by using our new parametrization
and its inbegral method are equal completely to
the results caleulated by using the u=ual Feyn-
mian parametrization technigue on the loop level
in the scheme of the dimensional vegn larizat ion,
In sec.2 we review our parameter transfor-
mation space oordinate and explain its several
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structures and the new integral method in the
parameter space. In sec.d we caleulate the sim-
plest Feymman smplitude coneerning the ver-
tex function to caleulate the anomalovus mag-
netic moment of an on-shell quark by vsing our
method of parametrization. In secd we try to
caleulate the smne wvertex function ss in secd
exploiting the beautiful Mellin Barnes represen-
tation method, and compare the result with the
ane in seed.

2 Our parameter transforma-
tion

We consider the parameter transformation
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where 7y = 3.1 £, We should remember that
oy im linear om £, . xli £ 0 non-linear on
g = 20 1. But there exists the following con-
atraint:
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where x, = t,/% 1" |1, and we have to pay at-
tentiom to the fact that this oy is not incloded
in the set V. Here we define the correspondence
[F— V', where [ ia the aet I = {t; t5. 0 1, }
and V' is the set V' = {xg. 2,0 o} Weean
s arize that the correspondence [T — 1 has
the next properties,

Using this transformation we can define the integral as follows:
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1. The set V' ois projective space,

2. The correspondence [T — 1 is injec-
tive under the condition xg = ¥ 8 =
ol eonstant |

A3 UnV =g (empty set)

4. An elament constrocted out of 40 =
1.2, oo, ) exists in ¢, In (1} it fits in with
it

T, =t,,lg"}:t,.
N |

A, The transformation is a statistical one,

Therefore the set Vs the socalled Hansdorff

apace mathanatically and has manifold features

when there is the nect condition =z, =% ¢, =

eimat.  We can calenlate the Jacobian of this
transformation:

abw =z (3
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We proved the equation(3] precisey using the
properties of a determinant See the equation [(56)
of Appendiz A, We can consider the ayunnet-
rie transformation [.z',] = [i,,-" 3% J't,]m-l well,
withomt ineluding the element =g = %50 8,
but the Jacobian becomes oo, s0 that we can't
well-define the integration vsing this symmetric
transformatiom. Refer to Appendix B, The par-
tial differential equations hold troe betwesn
and £,

Fag )

o o, (4]
{"H“ = 5%k~ ot — o K#A0)
where &, is Kromecker's delta. The character of
these equations is that on the one hand the equa-
tiom em g is linear on £ and £, and an the other
hand the squations on (i £ 0} are hyperbolic
funetion-like if #y is constant, that iz, on the Hat
sheet oy = ¢ in the parameter space.

(5]
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Fig.1 The anomalous magnetic moment diagram in QCT
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The mmber of the element dey is different from the number of the eement di but becanse there
exiata §-function §(1 —%}' | = |, after the surface integral on o, both mmbers of element are equal.
It is illustrated graphically in [5][6] using Maple softerare that the integral domain of the variable
g i8 from 0 to psitive infinity and the donainsg of the variables = (i = 1,2, < Jare from O ta 1.
The d-function contained within the right hand side in (5} comes from the constraint 320 7, =1,

3 The calculation of the simplest vertex function in QCD by our
parametrization technigque

We congider the simpleat vertex function in QUTY, The simplest Feynman amplitude is

d“l'.k 1
Iip.ql = ' "
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where g, g are the momenta of the outer lines with the mass e (o quark mass | and & is the gloom
marnentum of the inner line.

The Feyuman graph is illustrated in Fig.1. First of all we caleulate the Feymman ivbegral (6] by
using our parametrization, its ivbegral method and the dimensional regularization. Actually there
exiata the complex numerator ™ including ~ matriz and the apinor caleulation, but fundsmentally
it is known that if the equation (6] can be caleulated the integration including the nmmerator M
can be dome, too. See the reference [8|0] aboit the specific calenlation of N We Wick-rotate
the Feynman integral (G} from Minkowski momentum space p, g, & to Eodidean momentnm space
p.q. K and introduce the exponential parametrization. Now we eliminate the infinitesimal éy
beranze the denominator dosn't have any poles,
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Mow we introduce on-shell conditions p™ = —mz |, ¥ = —m for simplicity and have the following

variable transformation
) Ef—:l ty
T iz

In
where we put zg =73 i
The Jacobian of this variable tranaformation becomes as followsa:
ity 1, 15)
J = 1
: [ﬁ'[m x1, .E".:]] 0 )

Using (5} and (9] we can change the integral variables in (7] from ¢ to ;.

f[ﬁﬂ]"ﬂdynjm *

xerp[—z",’_,t. (K2 — 2pb't, /T3t — 20Kt/ T3t ]] (10)
) 1 11, 12, ta)
= i f [ abe [mm = m] o [ e [ e
. J£ " dzd(1 = T, mlexp — 2oV — 26Ky — 2 Woral]

If we integrate on x4 , we get the following equation.
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Performing the 2w dimensiomal momentum extension, introducing the 2w dimensional polar coor-
dinate and integrating the uuguLur parts, the integral (11) becomes as followr:

I = m]m” T, e [ dags} [ dey (12)
KJ{I o dr sexp|—zok|exp|—mi [z +22) 2]

where we used the relation p'y’ = —m?, and shifted the momentum from ¥ to ¥ = ¥ —p's; — g'z;
and further we rewrote & (four dimensiomal momentum) in & (2o dimensional momentum). See

Appendix B in [8] or refer ta [4].
Putting y = zok®, we have &* = y/zg and d(&°) = dy /a0, so that the integral is:

I =—imfﬂu-]ml—ﬂldﬂffﬁ-udﬂli] dry (1]
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Further performing the following variable transform = = m (z) + 2Pz | drg = dz/m{x + 22,
we luave:
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The final integral is very trivial and we can obtain the result as fallows:

—i T{d—wl) 1
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Finally e ]
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= A4z me

(g )2, (16)

4 The calculation by using Mellin Barnes representation

We try to calmlate the vertex integral with two massive denominators and the same masses
e, In this case we adopt the method applying the Mellin Barnes representation discovered by
ALDavydychev and others. From the equation (6)

dk 1
(2= ) [ = k) — md + i [(g — k)* — mZ + ][k + iy
We drop the infinitesimal quantity & for convenience as paendo Evdidean space. At first we change
ane of the denominator factors as follows @

! 1
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where  F (o, o, g B, G, 00 30 2] s lyper-geometric function and
(o) = (al{a+1}{a+2} - (a+n— 1} =Ta +n)}/T(a) (14]
ig, a0 called, Pochhammer s symbaol. Mow we consgider the Mellin Bames representation of | F as

foalerars:

1 b &
- T f  T(s+a)T(—s)(~2)"ds (20)

Then nging Mellin Bames formmla (20], we can write down the equation (18] as fallows
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Substituting the equations (21} and (22] to the equatiom (17] we obtain the following equation.
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where Ja[":'[]:ﬂ + 1w + 1) represents a massless propagator. s solutiom is found in the paper
precisely. 11| And the dimension of momentum is erl:eud-ed from d-dimension to n = Ze-dimension.
Further for simplicity the normalization fackor I:_E'ii']m is abbreviated . The result is
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where & = (p—g* is different from k in the equation (23] and corresponds to Mandelstam variable
&, MNext substituting the equation (24] into (23] we can obtain the integral
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Changing the variable w into w = § -3 — 5 —f —u — », we can transform the integral variables.
That is
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we can perform the integration of the equation (26) concerning the variable v, The result is
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Putting the equation (28] into the equation (26], we have
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We can caleulate the integration of the equation (20] by making use of the residue theorem o
complex variable calulna, The contour of the integration muns on the straight line of the imaginary
axis of the conplex planes( . 5, 1], respectively, from —ioc to ioc, and draws a large semicirele of the
half right plane tnming elockwise aronnd the origin in the regions |arg(a, 5, 1)) € 772, Considering
the relation

s = Ti+1-s)
B e e g S o g (30)

and the similar relations of T{—t) and ['{—u) , we can dedide the positions of poles and caleulate
the residue integrations of the equation (29] easily. That is, the resnlt becomes as
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Finally we can write the result in termns of a generalized hyper-geometric function of three variables
with the help of the formula (19] as
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Therefore
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It i not clear whether the result is equal to (15) and (16} except for the cosfficient factors, becanse
the analytic forms or asymptotic behaviors of hyper-geometric function $3 are unknown precisely

until e,

5 Concluding Remarks

In this paper we reviewed the strctures and
integral method of aur new transformation. And
exploiting our method, we caleulated Feynman
amplitude of vertex function. And we calenlated
the aame integral by vsing Mellin-Barnes trans-
formation method T think as one of the most
beautiful caleulations. In these days remarkable
progress has been made concerning Feynman in-
tegral caleulatioms. The results were represented
by meneralized hyper-geometric fonetions (Ap-
pell function, Lanricells function and Kanps de
Fériet function ete.]. But the concrete analytic
shapes, saymptotic behaviors and recurrence ve-
lations of these functions are not clear nukil o,
For a few years now these forumlas have been

derived by naing the results of Feynman integral
caleulations as a test function. For these rea-
s we can't obtain meaningful numerical re-
sulta of the Feynman amplitude in QCD with
arbitrary sccuracy.expressed in terins of hyper-
geometric function. On the other hand the com-
puter programs for the numerical calenlation of
Iy per-gemnetric functiom have been developed.
But the delicate relations among the integral do-
maing, the kernels and the dements of the com-
plex propagator integrals ave indistinet. Forther-
tore we T to conpare the results of the Feyu-
man integral calenlations by using several kinds
af method and examine them ciremmstantially,
At last it is important that we investigate the
mathematical aspects of our new transformation

precizely, too.
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Appendix B
We congider the following symmetrie variable transformation and prove that the Jacobian becomes

) (2) = (4/354) = e/ o

where @ Tuns from 1 to noand >y = 327 1. We put the Jacobian of the integral transformation,
fromn £ to L T

ki s fhx
E‘l :J::': L H:
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Performing the Laplace expansion of this determinant alomg the first row, we can obtain the fol-
leowring (n— 1) = (n — 1} determinants

L T i
L — o0 & 00
1 ':] -':_rr _iﬁ it 1 t

-E'_u : f +{_ :] {__;-_;fl:] : i
_1 _a 1 _ Bl
o = _ﬂL _UL _UL _ﬂL _J:"J_
dFp Ty Iy Ty T

={A_1)+{E—1J. (48]

Shifting the firat column of {B — 1] to the last column, we can make a triangnlar determinant and
calenlate the determinant easily, That is,

SRR [ S
(=)= (0" (-5 L3



1
1'u+] !

Applying the same technique to {A - ]:] e can obtain the (n —2) = (n — 2} determinants.

1 4
L —:‘:?fl:
(A-1)== . |
R
0 ﬁ 0 0 0
0 0 - 0 0
1 it ta : . :
-y (-)
a1
S84 O
I Ty iy I Iy
=(4-2)+(B-2 (41)
Following the sane pmceduretu{B—E:] HH[_E—]J:I'EIMTtIIE resnlt as
(B-2) =‘$ (42)

We caleulate the determinants in the same way suecessively. Then we can get the final result as
follorwvs:

du—y T
-~ 1 Tn | .
J 1 — — i ag _ E _ (.43]
B2 % noH 2 (7=

1 1 XA 11
=T L= =0

u = 1 i}

Therefore the Jacobian J besomes oo,
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