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Efficient Algorithm for Minimum Feedback Vertex Set Problem
on Trapezoid Graphs
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Abstract: In an undirected graph, the feedback vertex set (FVS for short) prob-
lem is to find a set of vertices of minimum cardinality whose removal makes the
graph acyclic. The FVS has applications to several areas such that combinato-
rial circuit design, synchronous systems, computer systems, VLSI circuits and so
on. The FVS problem is known to be NP-hard on general graphs but interesting
polynomial solutions have been found for some special classes of graphs. In this
paper, we present an O(n?58 +~n) time algorithm for solving the FVS problem on
trapezoid graphs, where v is the total number of factors included in all maximal

cliques.
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1 Introduction

Let G = (V, E) be a simple graph where V' is the set
of vertices and E is the set of edges of G with [V| =n
and |FE| = m. Suppose that V' is a nonempty subset
of V. The subgraph of G, whose vertex set is ¥V’ and
whose edge set is the set of those edges of G that
have both vertices in V', is called the subgraph of G
induced by V' and is denoted by G[V']. A cycle with
no repeated vertices is a simple cycle. In this paper,
a term “cycle” denotes “simple cycle”. The feedback
vertex set (FVS for short) consists of a subset ' C V/
such that each cycle in G contains at least one vertex
in F. In other words, a subset ' C V isan FVS of G if
the subgraph induced by G[V —F] is acyclic. The FVS
problem is to find an FVS of minimum cardinality in
G. The FVS problem has applications in several areas
such as deadlock prevention in operating systems [19],
combinatorial circuit design [12], VLSI circuits [11],
and information security [10].

The FVS problem is known to be NP-hard on
general graphs [9] and bipartite graphs [21]. How-
ever, interesting polynomial-time solutions have been
found for special classes of graphs, such as interval
graphs [16], permutation graphs [15], butterfly net-
works [17], hypercubes [8], star graphs [20], diamond
graphs [4], and rotator graphs [14].

Trapezoid graphs were first introduced by Dagan
et al. [6]. They showed that trapezoid graphs can be
used to model a channel routing problem in a single-
layer-per-net model and proposed an O(n?) algorithm
for the chromatic number and a less efficient algo-
rithm for the maximum clique on trapezoid graphs. In
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recent years, many studies have focused on the trape-
zoid graphs [6, 13, 3, 18]. Thus, trapezoid graphs
have been studied extensively from both the theoret-
ical and algorithmic point of view.

It has been shown in [5] that the class of trapezoid
graphs is properly contains both the class of interval
graphs and that of permutation graphs. Both algo-
rithm for the FVS problem on interval graphs [16]
and that on permutation graphs [15] employed a dy-
namic programming scheme. In contrast, our algo-
rithm finds the minimum FVS by using all maximal
cliques and chordless cycles of length 4 in trapezoid
graphs. It takes O(n?% 4+ yn) time to solve the FVS
problem associated with trapezoid graphs. Here, « is
the total number of factors included in all maximal
cliques.

The remainder of this paper is organized as fol-
lows. We first describe, in Section 2, some definitions
and notations used throughout this paper. Section 3
deals with several lemmas upon which our algorithm
is based. We show an algorithm for the FVS prob-
lem and analyze its complexity in Section 4. Finally,
Section 5 concludes this paper.

2 Definitions and Notations

There are two horizontal lines, denoted by L; and Lo.
A trapezoid model M consists of some trapezoids with
two corner points a; < b; lying on L; and the other
corner points ¢; < d; lyingon Lo. A graph G = (V, E)
is called a trapezoid graph if it can be represented by
M such that each trapezoid T; corresponds to a vertex
in V and (¢, j) € F if and only if T; and Tj intersect in
M [6]. Figure 1 shows a trapezoid model M consisting
of 17 trapezoids. Figure 2 shows the trapezoid graph
G corresponding to M shown in Fig. 1. In this paper,
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Figure 1: Trapezoid model M.
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Figure 2: Trapezoid graph G.

we assume that the trapezoid graph is connected, and
the corner points a;, b;, ¢;, d;, 1 <14 < n sorted by b;
are given. The class of trapezoid graphs includes two
well-known classes of intersection graphs: the class of
permutation graphs and that of interval graphs. The
former is obtained by setting a; = b; and ¢; = d; for
all 7 and the latter is obtained by setting a; = ¢; and
bi = dl for all 7.

A mazimal clique is a clique to which no further
vertex of the graph can be added so that it remains
a clique. All maximal cliques of G shown in Fig. 2,
the vertices of which are arranged in ascending or-
der, are MCy = {1,2,3}, MCy = {1,3,4}, MCs =
{1,4,5,7}, MCy = {6,7}, MC5 = {6,8}, MCy
{6,10}, MC; = {8,9}, MCs = {9,10}, MCy =
{9,12}, MCyy = {10,11}, MCy, = {11,12,15},
MCi; = {13,14,15}, and MCy3 = {15,16,17},
where each maximal clique is numbered in lexico-
graphic order. Using Bera et al.’s algorithm [3], all
maximal cliques can be generated for a trapezoid
graph G. Let N; be the cardinality of MC}, for ex-
ample, N1 = 3, N2 = 37 N3 = 4, N4 = 2, N5 = 2,
Ng =2, N7 =2, Ng =2, Ng =2, Nig = 2, Ny = 3,
N12 = 3, and N13 =3.

Throughout this paper, we use the term triangle to
denote a cycle of length 3. A cycle that contains no
chord is called a chordless cycle. A square is defined
as a chordless cycle of length 4, and is denoted by
S;. For instance, the trapezoid graph G shown in
Fig. 2 has two squares, S; = {6,8,9,10} and S,
{9,10, 11, 12}, respectively.

For each vertex ¢ € V, o(i) is the total number
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of maximal cliques (N; > 3) and squares containing
i. That is, o(i) = {MC; | i € MC;,N; > 3,j =
L....,pH+{SjlieS;,j=1,...,q} when a trape-
zoid graph G consists of p maximal cliques and ¢
squares. For the trapezoid graph shown in Fig. 2,
o(1) =3,0(2)=1,03) =2, 04) =2, 0(5) =1,
o(6) =1,0(7) =1,0(8) =1, 6(9) =2, 0(10) = 2,
o(1l) = 2, o(12) = 2, o(13) = 1, o(14) = 1,
o(15) =3, 0(16) = 1, and ¢(17) = 1. For the sake of
convenience, we denote the o value sequence of G by
oc=1[3,1,2,2,1,1,1,1,2,2,2,2,1,1,3,1,1].

3 Owur Approach

We show some lemmas that are useful for constructing
an efficient algorithm to solve the F'VS problem on a
trapezoid graph G. The following Lemma 1 provides
an important property of a trapezoid graph.

Lemma 1 ([2]) Let G be a trapezoid graph. Then,
the cycles contained in G are only triangles or
squares.

Lemma 2 was established by Bera et al. [3], who
presented an algorithm to find all maximal cliques of
a trapezoid graph.

Lemma 2 ([3]) Let G be a trapezoid graph with n
vertices. All mazimal cliques of G can be computed
in O(n? + yn) time, where v is the total number of
factors included in all mazximal cliques.

Lemma 3 was established by Alon et al. [1], who
developed an efficient algorithm to find all squares on
a simple graph.

Lemma 3 ([1]) Let G be a simple graph with n
vertices. All squares contained in G are found in
O(n?%8) time.

Lemma 4 Let G (V,E) be a trapezoid graph.
Moreover, let MC; and S; be the mazimal cliques and
squares on G, respectively. Initially, F is an empty
set. After executing the following steps (1) and (2),
F is an FVS of G.
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(1) For all MC;, N; > 3, include all vertices except
any two of MCj in F.

(2) For all S, include one vertex of S; in F.

Proof: By Lemma 1, any cycle contained in the
trapezoid graph is either a triangle or square. Note
that each triangle is a subset of any maximal clique.
A graph obtained by deleting all vertices except any
two from a maximal clique has no cycle. For example,
removing any m — 2 vertices from a maximal clique
of cardinality m makes the graph acyclic. Similarly,
if one vertex is removed from a square, the graph has
no cycle. Thus, no cycle exists in G[V — F] after ex-
ecuting steps (1) and (2), implying that F' is an FVS
of G. ]

We show an example of the construction of an FVS
on the trapezoid graph shown in Fig. 2 by executing
steps (1) and (2) of Lemma 4. First, we compute
all maximum cliques and squares of G by employing
Bera et al. and Alon et al.’s algorithms, respectively.
Then, 13 maximal cliques and 2 squares are obtained.
Next, step (1) of Lemma 4 is carried out for each max-
imal clique M. For instance, we choose vertex 2 for
MCy ={1,2,3} and include it into F. In this man-
ner, vertex 3 for M Cs, vertices 4 and 5 for M Cj5, ver-
tex 11 for M C1q, vertex 13 for M Cyo, and vertex 17
for M3 are iteratively selected and included into
F. In what follows, step (2) of Lemma 4 is executed
for each square ;. For example, we choose vertices 8
and 12 for Sy = {6,8,9,10} and S; = {9,10, 11,12},
respectively, and include them into F. After exe-
cuting these processes on (G, we obtain the result
F = {2,3,4,5,8,11,12,13,17}; this is an FVS of G
by Lemma 4. Unfortunately, F' constructed in this
manner is not necessarily the FVS of minimum car-
dinality. As shown in Fig. 2, a set {1,4,9,15} is the
minimum FVS on G.

Now, we define @); in order to compute the min-
imum FVS for a trapezoid graph containing p max-
imal cliques and ¢ squares. (); is numbered in the
ascending lexicographic order for all maximal cliques
MCj, N; > 3,5 =1,2,...,p, and squares S, j =
1,2,...,q, of G. For a trapezoid graph of Fig. 2, we
have Q1 = MCy = {1,2,3}, Q2 = MCy = {1,3,4},
Qs = MCs; = {1,4,5,7}, Q4 = S1 = {6,8,9,10},
Qs = S2 ={9,10,11,12}, Q¢ = MCyy = {11,12,15},
Q7 MC’12 = {13,14, 15}, and Qg = MC’13
{15,16,17}. Note that Qi, Q2, Q3, Qs, @7, and
Qs are maximal cliques, and Q4 and Q5 are squares.
Moreover, we can easily see that o(i) = {Q; | i €
Qj for all Q;}| fori e V.

The following lemma is given for obtaining the min-
imum FVS on trapezoid graph G. It is based on our
algorithm.
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Lemma 5 Let G = (V, E) be a trapezoid graph that
contains Qj, where j =1,2,...,r. Then, F' obtained
after executing the following Process A is the mini-
mum FVS of G. Initially, F is an empty set.

// Process A //
Forall Q;, 7 =1,2,...

7T7
(a) If |Q; — F| > 3 and Q; is a “mazimal clique,”

(a.1) If there exist two or more xs that minimize
o(z) forx € Q; — F, then let x1 and xo be
any two of them. Then, include all vertices
of Q; — I except x1 and x5 in F.

(a.2) If there exists exactly one x that minimizes
o(z) for x € Q; — F, then let it be xq
and let x5 be any x that attains the second-
minimum value of o(x). Then, include all

vertices of Q; — F' except 1 and xo in F.

(b) If |Q; — F| = 4 and Q; is a “square,” include
any vertex x of Q; in F, such that o(x) is the
mazimum of x € Q.

(c) (i) :=0o(i) — 1 for all vertices i € Q;.

Proof: As mentioned in Lemma 4, F' is an FVS since
G[V — F] contains no cycle after executing Process A.
The following arguments show that F' obtained by
Process A is a minimum cardinality F'VS. Suppose
that we have @);, where j = 1,2,...,7. We denote F'
obtained after executing the jth iteration of Process A
as F;. For each vertex ¢ € V, o(4) is the total number
of maximal cliques and squares containing 1.

After executing the 1st iteration, G[Q; — Fi] has
no cycle and Fj is clearly the minimum FVS for the
subgraph G[Q1]. In the 2nd iteration, two cases must
be considered.

Case 1: ()2 is a maximal clique. In this case,
step (a) is executed. If [Q2 — F1| < 3, no vertex
is included in F5. This implies that the elimination
of the vertices in F) obtained in the previous itera-
tion breaks all triangles of Q2. If |Q2 — Fi| > 3 and
there exist two or more zs that minimize o(x) for
x € Q2—F (step (a.1)), include all vertices of Q2 —F
except two vertices 1 and xg in Fy where o(z1) and
o(xg) are the two minima of x € Q2— F;. Moreover, if
|Q2— F1| > 3 and there exists exactly one = that min-
imizes o(x) for x € Q2 — Fy (step (a.2)), let it be
and let x5 be any x that attains the second-minimum
value of o(x). Then, include all vertices of Qo — F
except 1 and xo in Fh. It is obvious that the cardi-
nality of F' can be reduced by including those vertices
that appear in many maximal cliques or squares in
F. After executing step (a), G[@Q1 U Q2 — F3] has no
cycle and Fy is the minimum FVS of the subgraph
GlQ1UQ2].

Case 2: @ is a square. In this case, step (b) is
executed. If |Q2 — Fi| # 4, no vertex is included in
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F5. This implies that the elimination of the vertices in
F breaks the square of Qo. If |Q2— Fi| = 4, include a
vertex x of Q2 in Fy such that o(z) is the maximum of
x € Q2. After executing step (b), G[Q1UQ2 — F»] has
no cycle and F5 is the minimum FVS of the subgraph
GlQ1 U Q).

Hence, after executing the 2nd iteration, F3 is the
minimum FVS of the subgraph G[Q1UQ3]. Similarly,
in the 3rd iteration, G[Q1 U Q2 U Q3 — F3] contains
no cycle and Fj is the minimum FVS of the subgraph
G[Q1 U Q2 U Qs]. Using a similar argument, after
applying Lemma 5, G[Q1 U Q2 U --- U Q, — F,] has
no cycle and F. is the minimum FVS of the subgraph
G[Q1UQ2U---UQ,|. Hence, the Process A constructs
the minimum FVS F of the trapezoid graph G. O

In step (a) of Process A, if there exist three or more
vertices corresponding to x1 and x5, we can choose
any two of these vertices. Furthermore, in step (b)
of Process A, if there exist two or more vertices cor-
responding to x, we can choose any one of these ver-
tices. It is clear that the F'VS constructed according
to Process A depends on the chosen vertices. How-
ever, the cardinality of each FVS is minimum by Pro-
cess A. In general, it is not necessary that graph G has
only one minimum FVS. For example, {1,5,9,15},
{1,4,10, 15}, and {1,7,10, 15} are all minimum FVSs
of G, as shown in Fig. 2.

4 Algorithm and its Complex-
ity

We present an algorithm FVS for constructing the
minimum FVS on a trapezoid graph. The algorithm
FVS is based on the result of Lemma 5 presented
in the previous section. We use the trapezoid graph
G shown in Fig. 2 as an example to illustrate this
algorithm. The major steps of the proposed algorithm
FVS to construct a minimum FVS of G are given
below.

First, we compute all maximal cliques MC) for the
trapezoid graph G and its corresponding trapezoid
model M and then arrange the vertices of M Cj in as-
cending order in Step 1. As aresult, MC; = {1, 2,3},
MCy = {1,3,4}, MCs = {1,4,5,7}, MCy = {6,7},
MCs; = {6,8}, MCs {6,10}, MC7 = {8,9},
MCs = {9,10}, MCy = {9,12}, MCyo = {10,11},
MCy = {11,12,15}, MCyy = {13,14,15}, and
MCh5 = {15,16,17} are constructed. In Step 2, all
squares S; for G are computed. Then, two squares,
S; = {6,8,9,10} and S = {9,10,11, 12}, are ob-
tained in this step. In Step 3, all Q;, j =1,2,...,7,
are obtained. We have Q1 = MC; = {1,2,3}, Q2 =
MCQ = {1,3,4}7 Q3 MC?, = {1,4,5,7}7 Q4
S1 = {6,8,9,10}, Q5 = Sy = {9,10,11,12}, Q¢ =
MCy, {11,12,15}, Q7 = MCi» {13, 14,15},
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and Qs = MCy3 = {15,16,17}. In Step 4, all o
values o = [3,1,2,2,1,1,1,1,2,2,2,2,1,1,3,1,1] are
obtained. The details of the processes carried out in
Step 5 is described below.

Algorithm 1: Algorithm FVS

Input: The corner points a;, b;, ¢;, d; of each
trapezoid T;,i = 1,2,...,n.
Output: The minimum FVS F.
(Step 1)
Compute all maximal cliques MCj, j =1,2,...,p.
Let p be the total number of maximal cliques. ;
(Step 2)
Compute all squares S;, j =1,2,...,q.
Let ¢ be the total number of squares. ;
(Step 3)
Compute all Q; for j =1,2,...
(Step 4)
Compute all (i) fori=1,2,...,n. ;
(Step 5) /* Process A of Lemma 5. */
F:=0;
for AllQ;, j=1,2,...,r do
J* Ste (a) %/
if Q; is a mazimal clique A |Q; — F| > 3 then
if there exist two or more xs that minimize
o(z) for x € Q; — F then
Let 1 and x5 be any two of them.
end
if there exists exactly one x that minimizes
o(z) for x € Q; — F then
Let it be ;.
Let x5 be any z that attains the
second-minimum value of o(x3).
end
include all vertices of @; — F' except x; and
To in F.
end
/* Step (b) */
if Q; is a square N\ |Q; — F| =4 then
F := F U {z}, where z is one of the vertices
such that o(x) is the maximum values of
T € Qj;
end
/* Step (c) */
for z € Q; doo(x) :=o0(x)—1;
end

T3

(Step 5)
Initially, F' = 0,
o=1[3,1,2,2,1,1,1,1,2,2,2,2,1,1,3,1, 1].

1st iteration

Ql = {17273}7 F = {l}v
c=102012111,1,2,2,2,2,1,1,3,1,1].

2nd iteration
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Q2 = {17374}7 F= {1}7
o= [l, 0,0,1,1,1,1,1,2,2,2,2,1,1,3,1, 1].

3rd iteration

Q3 = {1747577}7 F= {1’4}7
o =10,0,0,0,0,1,0,1,2,2,2,2,1,1,3,1,1].

4th iteration
Q4 = {678797 10}7 F= {1745Q}7
o =1[0,0,0,0,0,0,0,0,1,1,2,2,1,1,3,1,1].

5th iteration
Q5 =19,10,11,12}, F = {1,4,9},
O- = [07 0707 07 07 07 O? O?Q)Q?l?l? 17 17 37 1) 1]'

6th iteration
QG = {]—17 12a 15}7 F= {1a4797E}7
o =10,0,0,0,0,0,0,0,0,0,0,0,1,1,2,1,1].

7th iteration
Q'? = {13, 145 15}7 F= {174797 15}a
o =10,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1].

8th iteration
Qs = {15,16,17}, F = {1,4,9,15},
o =10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0].

After executing Step 5, G[V — F] contains no tri-
angle and no square. The algorithm FVS gives F' =
{1,4,9,15}; this is the minimum FVS of G.

The algorithm FVS finds the minimum FVS of a
trapezoid graph G. We analyze the complexity of this
algorithm. In Step 1, all maximal cliques of G are
computed by using Bera et al.’s algorithm [3]. This
step takes O(n? + yn) time. In Step 2, all chordless
cycles of length 4 in G are computed. This step can
be executed in O(n*%) time by employing Alon et
al.’s algorithm [1]. In Step 3, all Q;, j = 1,2,...,7,
are computed. In Step 4, o(i) are computed for all
vertices ¢« € V. The complexities of Steps 3 and 4
depend on the number of maximal cliques obtained in
Step 1. Thus, these steps can be executed in O(vyn)
time. In Step 5, the minimum FVS F' is constructed.
This step can be executed in O(n?++n) time. Hence,
we have the following theorem.

Theorem 1 Given a trapezoid graph G, the algo-
rithm FVS finds the minimum FVS of G in O(n?58 +
yn) time, where 7y is the total number of factors in-
cluded in all mazimal cliques.

5 Concluding Remarks

In this paper, we proposed an algorithm that runs
in O(n?%8 4 yn) time to find the minimum FVS on
a trapezoid graph. Our algorithm employ the algo-
rithms for finding the maximal cliques and squares by
Bera et al. [3] and Alon et al. [1]. The method can
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be understood intuitively. The complexity of our al-
gorithm depend on the number of all maximal cliques
of a trapezoid graph. Bera et al.’s algorithm [3] can
find all maximal cliques efficiently when G does not
contain a large number of maximal cliques. Then,
our algorithm is useful when a given trapezoid graph
is edge dense and does not have a large number of
maximal cliques. Reducing the complexity of the al-
gorithm and extending the results to other graphs are
issues left for future research.
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