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An Optimal Algorithm for Finding Articulation Vertex

of Circular Permutation Graphs
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Abstract: Let G5 = (V;, E;) be a simple connected graph. A vertex v € Vj is an
articulation vertex if deletion of v and its incident edges from G disconnects the

graph into at least two connected components. Finding all articulation vertices of a

given graph is called the articulation vertex problem. This problems can be applied

to improve the stability and robustness of communication network systems. In this

paper, we propose a linear time algorithm for the articulation vertex problem of

circular permutation graphs.
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1 Introduction

Let G5 = (Vi, Es) be a simple connected graph with
V| = n and |E| = m. A vertex v € Vy is an ar-
ticulation vertex if the deletion of v and its incident
edges from G disconnects the graph into at least two
connected components. A graph with no articulation
vertex is called a biconnected graph. Finding all artic-
ulation vertices of a given graph is called the articula-
tion vertex problem. An O(n+m) time algorithm ex-
ists for solving the articulation vertex problem in sim-
ple graphs by using the traditional depth-first span-
ning tree method [1]. Moreover, efficient parallel algo-
rithms for finding articulation vertices, bridges, and
biconnected components in general graphs are given
in [2, 3]. This problem can be applied to improve the
stability and robustness of communication network
systems [4].

In many cases, more efficient algorithms can be de-
veloped by restricting the classes of graphs. For in-
stance, for permutation graphs, Ibarra and Zheng [5]
proposed an O(logn) time parallel algorithm us-
ing O(n/logn) processors for the articulation vertex
problem. Furthermore, for interval graphs, Sprague
and Kulkarni [6] proposed an O(logn) time paral-
lel algorithms with O(n/logn) processors for the
articulation vertex problem. Kao and Horng [7]
proposed optimal O(logn) time parallel algorithms
with O(n/logn) processors for finding all articula-
tion vertices, bridges, and biconnected components of
circular-arc graphs, which are a superclass of interval
graphs.

Let V, = [1,2,...,n] be a vertex set and P =
p(1),p(2),...,p(n)] be a permutation of V,. A per-
mutation graph G, is visualized by its corresponding
permutation model M,, which consists of two hori-
zontal parallel lines called the top channel and bottom
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Figure 1: Permutation model M, and graph G,,.

channel, respectively. Place the vertices 1,2,...,n on
the top channel, ordered from left to right, and simi-
larly, place p(1),p(2),...,p(n) on the bottom channel.
Next, for each ¢ € V,, draw a straight line from 7 on
the top channel to 7 on the bottom channel. Then,
an edge (¢,7) in G, exists if and only if lines ¢ and
J intersect in M. In this paper, “line” and “vertex”
are used interchangeably. An example of a permu-
tation model M, and its corresponding permutation
graph G, is shown in Fig. 1. Permutation graphs are
an important subclass of perfect graphs, and they are
used for modeling practical problems in many areas,
such as biology, genetics, very large scale integration
(VLSI) design, and network planning [8].

Circular permutation graphs properly contain a set
of permutation graphs as a subclass. Rotem and Ur-
rutia first introduced circular permutation graphs and
provided an O(n?37%) time recognition algorithm [9].
Lou and Sarrafzadeh showed that circular permuta-
tion graphs and their models have several applica-
tions in VLSI layout design [10]. They presented
an O(min(dnloglogn,nlogn) + |E|) time algorithm
for finding a maximum independent set of a circu-
lar permutation model, where § is the minimum de-
gree of vertices in the corresponding circular per-
mutation graph. Furthermore, they presented an
O(nloglogn) time algorithm for finding the maxi-
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mum clique and the chromatic number of a circular
permutation model. Subsequently, the recognition al-
gorithm was improved in O(m + n) time by Sritha-
ran [11].

In this paper, we propose linear time algorithms
for the articulation problems in circular permutation
graphs. The rest of this paper is organized as follows.
Section 2 describes some definitions of circular permu-
tation graphs and models. Section 3 introduces the
extended circular permutation model and its proper-
ties. Sections 4 consider algorithms that address ar-
ticulation vertex problem and the complexity of this
algorithm. Section 5 concludes this paper.

2 Circular Permutation Model
and Graph

We first illustrate the circular permutation model be-
fore defining the circular permutation graph. There
exist inner and outer circles C7; and Cy with radii
r1 < rg. Let CP = [ep(1),¢ep(2),...,cep(n)] be a per-
mutation of integer sequence [1,2,...,n]. Further-
more, cp~ (i), 1 < i < n, denotes the position of the
number ¢ in C'P. Consecutive integers 7, 1 < i < n,
are set to be counter-clockwise on C;. Similarly, ¢p(4),
1 <7 < n, is set to be counter-clockwise on Cs. For
each i, 1 < i < n, draw a chord joining the two i’s, one
on C7 and the other on C5, denoted as chord i. The
geometric representation described above is called a
circular permutation model CM. Figure 2 illustrates
an example of CM with 12 chords constructed by
cpP =[11,1,5,10,2,7,6,9,4,8,3,12]. This model is
considered to be proper if any two chords i and j
intersect at most once in the CM. In this paper, we
consider only proper circular permutation graphs and
models, and therefore, the word “proper” is omitted
henceforth.

Next, we introduce circular permutation graphs.
An undirected graph G is a circular permutation
graph if it can be represented by the following circu-
lar permutation model CM: each vertex of the graph
corresponds to a chord in the annular region between
two concentric circles C; and Cy, and two vertices
are adjacent in G if and only if their corresponding
chords intersect exactly once [9]. Figure 3 illustrates
the circular permutation graph G corresponding to
CM shown in Fig. 2. In this example, {2,10} is an
articulation vertex set.

Next, we consider a fictitious chord @ which con-
nects the point a’ that is placed between 1 and 12 on
C1 and point @” on Cs. A chord that intersects @ is
called a feedback chord. The set of all feedback chords
is denoted by F. Moreover, a set of feedback chords
that intersect @ in clockwise is defined as F'~, and a
set of feedback chords that intersect @ counterclock-
wise is defined as F'*. We must place point a” on
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Figure 3: Circular permutation graph G.

Cy so that |F~| = |FT| is satisfied. In the example
shown in Fig. 2, point a” is placed between 3 and 12
on Cy. Consequently, F' = {3,4,11,12}, F~ = {3,4}
and FT = {11,12}. If a fictitious chord @ exists that
does not intersect any chord in CM, a model formed
by opening CM along @ is equivalent to a permuta-
tion model. This problem can be solved by applying
Ibarra et al.’s algorithm [5] because this problem is
the same as that of permutation graphs. In this pa-
per, we assume that any fictitious chord intersects at
least one chord.

3 Extended Circular Permuta-
tion Model

In this section, we introduce an extended circular per-
mutation model ECM that is constructed from a CM.

Let n be the number of chords in CM. First, a point
a’ is fixed between 1 and n on C;. Next, we consider a
fictitious chord @ with |[F~| = |F*|. In Fig. 2, we ob-
tain |F~| = |FT| = 2 by placing point a” between 3
and 12 on Cy. ECM is formed by opening CM along
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a. ECM consists of two horizontal parallel lines L,
and Lo, called top and bottom channels, respectively.
The top channel L; is assigned the consecutive num-
ber i, —n+1 < i < 2n, from left to right. The bottom
channel L, is assigned p(i), —n+1 < i < 2n, from left
to right. Here, p(i), 1 <4 < n, on Lo, is assigned a ¢p
value on (5 in the counter-clockwise direction from
point a”. Next, p(i), 1 < i < n, changes to p(i) — n
if i € F*. Furthermore, p(i), 1 <4 < n, changes to
p(i) +n if i € F~. We execute p(i —n) = p(i) —
and p(n 4+ i) = p(i) + n for 1 < i < n. For each
—n+1 < i < 2n, a straight line is drawn from 4 on
L, to i on L. After executing the above process,
ECM is constructed from CM. Figure 4 illustrates
ECM constructed from CM shown in Fig. 2. Here,
p~1(i) denotes the position of i on L.

Circular permutation and circular-arc graphs are
circular versions of permutation and interval graphs,
respectively. Moreover, as mentioned in Section 1,
circular permutation and circular-arc graphs are su-
perclasses of permutation and interval graphs, respec-
tively. Efficient algorithms have been developed that
address various problems concerning permutation and
circular-arc graphs. However, in general, problems for
circular graphs tend to be more difficult than those
for non-circular graphs. One of the reasons is that we
can not uniquely determine the starting position of
an algorithm for a circular graph due to the existence
of feedback elements although it can be fixed for a
non-circular graphs.

For several problems, we can develop circular ver-
sions of the existing algorithms by constructing ex-
tended intersection models of the problems. By
using extended intersection models, we can deter-
mine a start position of algorithm uniquely and ap-
ply partially the algorithms of the non-circular ver-
sions. For instance, this method has been applied
to develop efficient algorithms for the shortest path
query problem [12, ?], the articulation vertex prob-
lem [7] on circular-arc graphs, maximum clique and
chromatic number problems [10], the spanning forest
problem [13] on circular-permutation graphs. In this
paper, we use FCM to construct an efficient algo-
rithm for an articulation vertex problem.

Property 1 stated below, can be derived in a
straightforward manner from the processes of con-
structing ECM.

Property 1 Linesi—mn, i, and i+n in ECM corre-
spond to the vertex i in G.

Two vertices ¢ and j are adjacent in a circular
permutation graph if and only if their correspond-
ing chords intersect exactly once in CM. When two
chords 7 and j (i < j) intersect in CM, we distinguish
the following three cases:

Case l: i€ F~ orje F™
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In this case, lines j and i+n intersect in ECM with
lines ¢ +n and j, respectively.
Case2: i€ FT and j € ™

This case is infeasible because it implies that chords
1 and j intersect twice in C'M.
Case 3: Remaining conditions for ¢ and j

In these cases, lines ¢ and j intersect in FCM.

Based on the above mentioned information, we can
state Property 2 as follows:

Property 2 Let ¢ and j (i < j) be two vertices in
G. Then, vertex i is adjacent to j if and only if lines
i and j, or lines i and j —n, or lines i +n and j
intersect in ECM.

Some notations that form the basis of the algo-
rithms in sections 4 and 5 are defined as follows: The
set of all lines that intersect line ¢ in ECM is de-
noted by N(i). In addition, N[i] = N(i) U {i}. For
line ¢ in ECM, the following functions are defined:
TR(i) = max{ j | 7 € NJ[i]} and STR(i) = max{ j |
j € (N[i| \ TR(z)) U {i}}. BR(i) = k such that
p ) —max(p 1) | 5 € V). AG) i B
for line i are defined as follows: A(i) = |{
1) > i} and BO) <[] 15> 6720 < "
Table 1 shows TR(i), BR(i), A(i) an (z) or ECM
shown in Fig. 4.

4 Algorithm AVC

In this section, we present an algorithm AVC that
finds all articulation vertices of a circular permuta-
tion graph. Let ECM be an extended circular per-
mutation model constructed from CM. We say a path
exists between ¢ and j if either line ¢ directly inter-
sects line j, or there exist lines kq, ks, ..., ks in ECM
such that line 7 intersects ki, ki intersects ko, ...,
ks_1 intersects kg, and kg intersects line j. Moreover,
two lines ¢ and j in ECM belong to the same line
component if there exists a path between i and j. In
Fig. 4, line 8 is a cut line for lines 10 and 11.

4.1 Properties of Articulation Vertex

Ibarra and Q. Zheng [5] provided Lemma 1, which is a
necessary and sufficient condition for the articulation
vertex in a permutation graph G,.

Lemma 1 ([5]) Let G, be a permutation graph cor-
responding to a permutation model M,. A vertex v is
an articulation vertex of G, if and only if there ex-
ists an integer i (1 < ¢ < n) such that either of the
following conditions holds in My:

(1) v = TR(p(i)) for B(i) =
p(i) <1,

1, Ai—1) =1, and
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i -c\t 3 1/5 1’6 17 1\8 L
Lo .
o0 6 3 13 17 22 14
P 1 3 12 10 16 20
1 3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
p(i) 3 4 4 3 0 -1 1 5 10 2 7 6 9 16 8 15 12 11 13 17
pil(i) 3 -7 2 1 3 6 0 -2 4 8 7T 11 9 5 14 13 15 18 12 10
TR(i) -2 -2 4 4 4 10 4 4 5 10 10 16 10 10 16 16 16 22 16 16
BR(i)|4 -4 -1 -1 1 2 2 2 2 6 6 8 8 g§ 11 11 13 14 12 11
A7) 2 2 2 1 1 1 1 1 1 1 1 1 2
B(l) 2 2 2 1 1 1 1 1 1 1 1 1 2
av (1) 10 10 16
avy(7) 2 2 8
(2) v = BR(i) for A(i) = 1, B(i — 1) = 1, and j=p(i) -l i TR(p(i)

pL(i) <.

Let G = (V, E), |V| = n be a circular permutation
graph corresponding to a circular permutation model
CM, and ECM be an extended circular permutation
model constructed from CM. Hence, Lemmas 2 and
3 follow from Lemma 1.

Lemma 2 TR(p(i)) is a cut line for i — 1 and i in
ECM if B(i) =1, A(i — 1) =1 and p(i) < i.

(Proof) By Lemma 1—(1), the elimination of line
TR(p(i)) from ECM disconnects it into at least two
line components when B(i) = 1, A(i — 1) = 1 and
p(i) < i. Assume that FCM is divided into two line
components, namely M; and M, by removing line
TR(p(i)) (Fig. 5). We show that M; and M, include
lines ¢ — 1 and line i, respectively.

From condition A(i — 1) = 1, ECM has a line
j(< i —1) with p71(j) > i — 1. We assume that
p~1(j) > i. There exists some line (< i — 1)
with p~1(r) = 4 from condition p(i) < . It fol-
lows A(i — 1) > 2 and contradicts the hypothesis of
A(i — 1) = 1. Hence, such a line r does not exist.
This implies that p~*(j) = i and line j has maximum
p~! value in M.

According to Lemma 1-(1), only line TR(p(7)) con-
nects M; and M,. Furthermore, by the condition
B(i) = 1, TR(p(i)) > i and p~ ' (TR(p(i))) < i.
Since ECM is constructed under the condition that
|F~| = |FT|, there are i positions from 1 to i on Lo.
However, 7 + 1 positions are required from 1 to i on
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TR(p(i)) is a cut line for i-1 and i

Figure 5: Example of Lemma 2.

Ly when p~1(i) < i. This is the contradiction of the
pigeonhole principle. Thus, p~1(i) > i.

Hence, for two lines i — 1 and i, p~1(i — 1) < i and
p~1(i) > i, respectively. Furthermore, line p(i) has
maximum p~! value in M; and only line TR(p(i))
connects My and Ms,. Hence, M; and M include
lines ¢ — 1 and i, respectively. ]

Lemma 3 BR(i) is a cut line for i and i+1 in ECM
if A(i) =1, B(i — 1) =1, and p~*(i) < i.

(Proof) Lemma 3 is symmetric to Lemma 2. Hence,
its proof is similar to that of Lemma 2. a

Lemma 4 Let G = (V, E) be a circular permutation
graph corresponding to ECM. A vertex v is an artic-
ulation vertex of G if and only if elimination of line v
disconnects ECM into at least three line components.

(Proof) Sufficiency of this condition obviously holds;
thus, we only prove necessity. Consider a case of
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Algorithm 1: Algorithm AVC

Input: CP = {p(1),p(2),...,p(n)} of a circular
permutation graph G.

Output: Articulation vertices of G.

(Step 1)

Construct ECM and compute p~!(i);

(Step 2)

Compute TR(i), BR(7) for i in ECM;

(Step 3)

Compute A(z) and B(i) for i in ECM;

(Step 4)

/* Compute avy (i) */ ;

for each 1 <i<ndo
if (B(i)=1and A(i—1)=1 and p(i) < i) then
av1(7) = TR(p(i)) ;

end

(Step 5)

/* Compute avy (i) */;

for each 1 <i<ndo
if (A(i)=1and B(i—1)=1 and p~1(i) < i)
then avy(i) = BR(3) ;

end

(Step 6)

for each 1 <i<ndo
Normalize avq (i)
Normalize avs (i)

end

(Step 7)

if avi(i) has at least two same values for 1 <i < n

then av; (i) is an articulation vertex ;

if ave(i) has at least two same values for 1 <i < n

then avy(i) is an articulation vertex ;

i

bl

Function Normalize v{

if v<1thenv:=v+n;
if v >nthenv:=v—n;
return v ;

}

where ECM is divided into just two line components
M, and My by removing line v from ECM. M; in-
cludes some copies of lines that are in My, and My
includes some copies of lines that are on M; subject
to conditions F' # () and |F~| = |F*|. Thus, ECM is
divided into M; and Ms, but a graph corresponding
to My U M5 is connected.

In the following lemma, assume that FCM is di-
vided into k(> 3) line components M, Ma, ..., M
when line v is removed from ECM. Here, M includes
some copies of lines that are in My, and M}, also in-
cludes some copies of lines that are in M;. Thus,
the subgraph corresponding to M7 U Mj, is connected.
Hence, G — v is a graph with k£ — 1 connected com-
ponents (Ma, ..., My_1, My U My). That is, G — v is
disconnected. O
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Lemma 5 Let G = (V, E) be a circular permutation
graph corresponding to ECM. A vertex v is an articu-
lation vertex of G if and only if there exist at least two
identical values of v for 1 < i < n such that either of
the following two conditions holds in ECM;

(1) v=TR(p(i)) for B(i) =1 and A(i —1) =1 and
p(i) <.

(2) v = BR(i) for A(i) =1 and B(i — 1) = 1 and
pL(i) <.

(Proof) Assume that condition (1) holds for i; and i,
ie., v =TR(p(i1)) = TR(p(iz)) for 1 < i1 < iy < n.
By Lemma 2, v is a cut line for ;1 — 1 and 41, and is
also a cut line for 75 —1 and i5. Hence, the elimination
of line v disconnects ECM into three line components
My, My, and M3 that include iy — 1, i1, and 49, re-
spectively. By Lemma 4, G is disconnected because
ECM is divided into at least three line components.
Thus, vertex v is an articulation vertex of G. In a
similar manner, we can prove case (2). O

We show an example in which vertex 10 is recog-
nized as an articulation vertex by applying Lemma 5.
In Fig. 4, when ¢ = 6, B(i) =1, A(i — 1) = 1, and

p(i) = 2 < i, and consequently, v = TR(p(i)) =
TR(p(6)) = 10. Similarly, when ¢ = 8, B(i) = 1,
A(i — 1) = 1, and p(i) = 6 < ¢, and thus, v =
TR(p(i)) = TR(6) = 10 holds true. Thus, we can

obtain 10 as the articulation vertex because the val-
ues (v = 10) appear for i = 6 and 8.

4.2 Analysis of Algorithm AVC

The algorithm used to find all articulation vertices of
a circular permutation graph is described formally in
Algorithm AVC.

Next, we analyze the complexity of Algo-
rithm AVC. In Step 1, we construct a circular per-
mutation model ECM that can be executed in O(n)
time. In Step 2, TR(i) and BR(i) are computed.
In Step 3, A(i) and B(i) are obtained. The above
preprocessing steps take O(n) time [5]. Steps 4-6
compute av (i) and avy(i) by applying Lemma 5 and
they run in O(n) time. By applying Step 6 of Algo-
rithm AVC, we obtain av;(i) and awvy(i) in Table 1.
After executing Step 7, all articulation vertices of a
circular permutation graph are correctly found. In
Table 1, each of av, and avs has two identical values,
10 and 2, respectively. Thus, vertices 10 and 2 are
articulation vertices. Hence, we obtain the following
theorem:

Theorem 1 Algorithm AVC can solve the articula-
tion vertex problem of circular permutation graph in
O(n) time.
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5 Concluding Remarks

In this paper, we proposed an algorithm that runs in
O(n) time to find all articulation vertices of a circu-
lar permutation graph. Our algorithm is constructed
by employing Ibarra’s algorithm [5]. In future, we
will continue this research by extending the results to
other classes of graphs.
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