3次元CADを活用した板金加工に関する実験実習の開発

石塚 和則*・荒井 誠**

Development of Experimental Training Materials on Sheet Metal Processing using 3D-CAD System

Kazunori ISHITSUKA Makoto ARAI

Abstract — This paper describes a learning method of 3D-CAD educational method for department of Mechanical Engineering. The learning contents are studied until the assembly modeling from the part modeling, on the assumption that students completed the basic learning of machine design. In this study, 3D-CAD system has been introduced and new CAD educational method is practicing for Mechanical Engineering. Authors developed the system of new 3D-CAD education on sheet metal processing. In the paper, authors mention about some developed teaching materials and show the applicability of the proposed methodology.

Key words : Sheet Metal Processing, CAM, 3D-CAD System, Digital Engineering

1. はじめに

高等教育においては、産業界のニーズに対応したより実践的な能力を持つ教育内容への変革が求められている。本校において板金設計加工は、これまで実習において軽視され、廃止された。そこで提案する実験実習システムでは板金設計加工（板金局部の設計、ネスティング、切断）を着目した。学習だけでなく、製造工学科4学年『CAD/CAM』科目においてもصراعかけ発表させ、デジタルエンジニアリングを活用したアイデアを実現する技術と実践的なものづくり能力の定着を実現するための分かり易い教材を開発する。

2. CAM実習の取り組みについて

近年の情報処理技術の発展にともない機械製造分野では、大きく変化CADCAMシステムが利用されるようになり、これらのものづくり機器を最大限に利用することが、機械系設計技術者の必須条件となりつつある。このような背景を踏まえ、本校に本格的な3次元CADシステムが導入された。

<table>
<thead>
<tr>
<th>高学年↑</th>
<th>拔擢する3次元CAD教育と連携するCAM実習</th>
</tr>
</thead>
<tbody>
<tr>
<td>高度化</td>
<td>CAM実習</td>
</tr>
<tr>
<td>低学年↓</td>
<td>基本NC加工実習</td>
</tr>
</tbody>
</table>

図1. 新しいCAM実習を加えた

設計実習と実習が連携した教育
その後、昭和55年の実習内容見直しにより廃止された。しかしながら曲げ部品の展開図作成や切断、のつくりの最初の工程であり欠くことのできない知識・技術であるため、その復活が望まれる。

4．提案するCAM実習

対象学生は設計、加工、NC加工などの関連科目の知識を十分に習得していることを前提に4学年とした。提案する新しいCAM実習は、表1に示すように3週の内容で構成する。はじめに第1週において、3次元CADシステムを用いた板金部品の作成方法についての学習を。CAD上で形状を含む様々な設計が容易に行え、学生の創造力が養える。

次に第2週において、CADデータから加工に必要な切断データを作成する実践的な内容を学習する。デザインしたソリッドモデルを板金部品データに変換し、自動的に展開図を作成する。さらに切断に必要な加工データを作成する機能を使用できる教材を準備する。

さらに第3週において、作成したデータを用いて実際に加工を行うことにより、実習の効果を深める内容とする。加工にあたってはレーザー切断機を用いて模造紙を切断し、曲げて製作する。加工材料に用いる模造紙を利用することで、繰り返しの製作が容易に行える。

5．施行結果

平成25年前期機械工学科4学年で『CAD/CAM』科目において、表1に示した第1週、第2週の内容について教材を施行した。本年度は曲げを含む板金部品としてトースタ製作を自由課題とした。学生の作品例を図3に示す。

<table>
<thead>
<tr>
<th>回数</th>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>第1週</td>
<td>2</td>
<td>デザイン</td>
</tr>
<tr>
<td>第2週</td>
<td>2</td>
<td>CAMデザイン作成</td>
</tr>
<tr>
<td>第3週</td>
<td>2</td>
<td>加工実習</td>
</tr>
</tbody>
</table>

6．まとめ

高等教育機関の中でも工業高等専門学校においては、従来から実験実習に力を入れ、多くの時間を費やしてきた。しかしながら工業技術の進展に伴い、さらなる実習内容の発展が求められている。

本取り組みは板金加工において3次元CADを取り入れることにより、効果的に板金加工に関する知識の習得することを目標としている。情報処理技術を活用した実習教材内容の改良を進め、シミュレーションを中心に課題解決を促す実習教材の開発を行い、できるよう実務的な実習方法の検討と提案を行ってきた。これらの改訂された実習により通用性が深まり、教育効果の向上が期待できる。学生が将来、即戦力となるエンジニアとして活躍できるような実習のあり方、効果的な教授方法を確立し、平成25年度の前期に施行した。

平成26年度からは加工を含めた形で教材を活用するとともに、その後も改良を加えていく。なおこの取り組みは平成24年度に採択された科学研究費補助金研究（24917006）によるものである。