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The investigation of the generalized functions via the heat kernel
method
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Abstract. The aim of this report is to introduce the theory of the generalized functions via the
heat kernel method which is our main investigation. Especially, we give the proof of the Schwartz
kernel theorem for the tempered distributions via the heat kernel method.
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1 Introduction

We have mainly investigated the general-
ized functions, especially the dual space of the
Gel’fand-Shilov spaces ([6]), via the heat kernel
method. The heat kernel method, introduced by
T. Matsuzawa in [10], is the method to charac-
terize the generalized functions on the Euclidean
space by the initial value of the solutions of the
heat equation.

wsE Solutions of
Generalized Heat Equation
Functions - with
=0+ some estimate
ux )
u U(x,t),
PR
t—0+

where E(z,t) is the heat kernel on the Euclidean

2
space defined by E(z,t) = (1/\/@)‘16_%.

By means of the heat kernel method, we eas-
ily consider the theory of the generalized func-
tions. Therefore we can give the easier proof
of some fundamental theorems for the gener-
alized functions. For example, the following
results is known: e The Schwartz kernel the-
orem by the heat kernel method ([3], [12]) e
The Paley-Wiener theorem by the heat kernel
method ([9], [19]) @ The Edge-of-the-Wedge the-
orem by the heat kernel method ([18]) e The
Bochner-Schwartz theorem by the heat kernel
method ([4]) e The propagation of micro ana-
lyticity of positive definite functions ([20]) @ The
Asymptotic expansions of the solutions to the
heat equation by the heat kernel method ([13],
[14], [21], [22]).

In this report, to introduce our investigation
concretely, we focus on the space of the tem-
pered distributions which is a subspace in the
dual space of a Gel'fand-Shilov space and we
will give the proof of the Schwartz kernel the-
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orem for the tempered distributions via the heat
kernel method. Moreover we also introduce the
Schwartz kernel theorem for the tempered dis-
tributions on the Heisenberg group via the heat
kernel method as our recent result.

The Schwartz kernel theorem is not only a
fundamental theorem in the theory of the gen-
eralized functions but also am important result
to consider the property of the Weyl transform
as the operator (see [12]) and to consider BIBO
(Bounded-Input Bounded-Output) stable for the
LTI system theory (the linear time-invariant sys-
tem theory) (see [1] and [15]).

2  S(R?) and S'(RY)

We define the space S(R?) and its dual space
S'(RY).
o S(RY) = {p € C*(RY) | Va, fe 72,

[¢lla,s = sup [2207p(z)| < oo}
reRd

The space S(R?) is called the Schwartz class.

e We say T is in the space of the tempered
distributions and denote by T' € S'(RY) if T is
a linear map from S(RY) to C and satisfies the
following estimate:

(T ¢} | < Cllellas, Yo € SRY)
for some constant C' > 0 and some a, § € Z‘i.

Example 1. 1. ¢ € S(R),

1
R
cosh z S(R),

3. E(z,t) € S(RY),

2.

4. § € §'(R), where ¢ is the Dirac’s delta func-
tion,

L (@=20), S'(R)
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6. P(x) € S'(R), where P(x) is a polynomial,

7. ¢ ¢ S'(R).

3 The heat kernel method for
S'(RY)

The following Theorem 1 is the heat kernel
method for the space S'(R%):

Theorem 1 ([11]). Let u € S'(RY). If we put
Uz, t) = (u, E(x — -, t)), then we have

1. U(z,t) € C=(R? x (0,0)),
2, <(§t — Am> U(x,t)

_ 0? 9?
(0700)7 Ar_aiﬁ++aiﬁ7

0, (z,t) € R% x

3. for any p € S(RY),

lim

Jim, [ Ul e(z)de = (u, ),

4. there exist a constant C' > 0 and u,v > 0
such that

|U(z,t)] <Ct™*(1+ |z|)¥, z € RY, 0 <t < 1.

Conversely, if the C*®-function U(x,t) satisfies
the condition 2 and 4, there exists u € S'(RY)
such that U(z,t) = (u, E(x — -, 1)).

Remark 1. By Theorem 1, we can see that for
the solution of the heat equation U(x,t) with
the estimate in the condition 4, there exists u €
S'(R%) such that

Uz, t)p()de = (u,¢)

lim
t—>+0 Rd

for any ¢ € S(R?). We use this fact in the proof
of the Schwartz kernel theorem (Theorem 2) for
the space S'(R%).

Remark 2. Several mathematicians show the
heat kernel method for some functional spaces

as follows:
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Heat Kernel Methods
A'(K) (T. Matsuzawa, 1987, [10])

S’ (T. Matsuzawa, 1990, [11])

(S1)" (Korean Group, 1993, [8])

G’ (Korean Group, 1994, [2])

(S7)" (C. Dong and T. Matsuzawa, 1994, [5])
(81) (M. Suwa, 2004, [18])

(Sr)" (Y. Oka and K. Yoshino, [14])

(8-)'(A) (Y. Oka and K. Yoshino, [14])

e A/(K): the space of the hyperfunctions with
a compact support K, e (S)'(RY): the space
of the Fourier hyperfunctions, e G’(R%): a space
of the Fourier ultrahyperfunctions, e (S;)'(R9):
a space of the distributions with exponential
growth, e (S,)(R?): the dual space of the
Gel’fand-Shilov space S,.(R%),  (S,)'(A): the the
dual space of the Gel'fand-Shilov space S,(R%)
with regular closed support A.

4 The Schwartz kernel theorem
for S'(RY)

We will give the new proof of the following
Schwartz kernel theorem for the space S’(R?) via
the heat kernel method.

Theorem 2 ([16]). Let k be a continuous and
linear map from S(R%) to S'(R%1).
Then there exists K € S'(R% x R%) such that

(ko) = (K, @ ) = / / K (2, y)o (@) (y)dedy

for any ¢ € S(RM) and ¢ € S(R%).

Proof. Since k is continuous, the bilinear form B
on S(R%) x S(R%),

B(p,¥) = (kv, ) , ¢ € SR™) , ¢ € S(R®)

is separately continuous. Since S(R%) and
S(R92) is Fréchet space, B is continuous. Hence,
there exist a constant C' > 0 and o, 3,0/, 3" € Zi
such that

|k, o) | < Cliellasltllars.  (8)
Set for (z1,r2) € RY x R and t > 0,

Ki(z1,22) = (kE(x9 — -, t), E(x1 —-,1)).
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Now we show that K; converges in
S'(RM xR®) as t — +0. By (4), there
exist a constant C' > 0 and p1, po, Ny, No > 0
such that

| Ki(@1, @2)| < CE 0 (1 |y ) (14 |2 )™

Moreover we can see
9 A | Ki(z1,22) =0
8t t 1,42) —

for x; eR%, j=1,2and t>0.
Therefore, by Theorem 1, there exists
Ko € S'(R™ x R%®) such that Ko = [Jim K in

S'(R™ x R%).
For ¢ € S(R%), ¢ € S(R%), we have

<Kt7 80®¢>

= // Ki(w1, x2)p(21)(v2)dzrdrs
R41+d2

= // . (kE(x2 — y2,)0(x2), E(z1 —y1,t)p(x1)) deidzs.
R41+d2

Since the Riemann sum of an integral con-
verges in S(R%), j = 1,2, we obtain

<Kt7 <P®1/1>

<k B(es — ya,pulea)des , [ E(m—yl,t>w<x1>dw1>.
RA2 R41

Therefore we obtain (Ko, ¢ ® 1) =
t — +0. O

(kv, @), as

5 Recent result

In [15], we obtain the Schwartz kernel theorem
for the tempered distributions on the Heisenberg
group, which is the 'most commutative’ among
the noncommutative Lie groups, via the heat
kernel method. In this paper, we introduce the
Heisenberg group, the heat kernel method for the
tempered distributions on the Heisenberg group
and the Schwartz kernel theorem for the tem-
pered distributions on the Heisenberg group. In
detail, we refer to [15].

5.1 The Heisenberg group H?

We recall the definition of the Heisenberg
group (see [17]).

Let (z,y,t) and (z/,9/,t') € R x R x R =
R24*+1 Then we define the group law of R24+!
by

(z,y,t)(a", ¢, 1)
=@+2,y+y,t+t +20" -y —x-y)).

The group R**! with respect to the group
law defined by (5.1) is called the Heisenberg
group and denoted by H? H? is a locally
compact Hausdorff group and its Haar mea-
sure is the Lebesgue measure dxdydt. The left-
invariant vector fields on the Heisenberg group
H? as R?¥*! are represented byX; = 0/0x; +
Qyja/at, Xd+j = 6/8yj — 2:1:j6/8t and X2d+1 =
0/0t for j = 1,2,--- ,d and these make a basis
for the Lie algebra of H.

We denote by Ay the sub-Laplacian on HY
defined by Age = ZM X2 and consider the
heat operator 9/9s — Aga on H? x (0,00). Let
A > 0. Then we define the dilations 6y by
Sa(z,y,t) = (Ao, My, \%t) for (x,y,t) € H7
Moreover, a function u from H¢ to C is called the
Heisenberg-homogeneous of degree k € Z if u o
5y = Ay for A > 0. Especially the Heisenberg-
homogeneous of degree of the distance functlon
d defined by d(z,y,t) = (22 + y2)? + £2)1 for
(z,y,t) € H? is one. The distance between two
points (x,y,t) and (2/,9/,t') in H? is given by
d((@,y,t')" (z,y,t)) . Let f and h be suitable
functions on H?. Then we define the convolu-
tion f*h of f with h as follows: (fxh)(z,y,t) =
Jua F @&y Ry ) (=, y, t))da'dy'dt’ for
(z,y,1), (2,9, ') € HL.

For o € Z2%%, the functions (Xa¢)(z,y,t) are
defined by

(Xa)(@,y,t) = X5d" @)@y, 1)
for a function ¢ € C*°(H?). The Schwartz class

S(H?) on the Heisenberg group is defined by as
follows:

(g

Definition 1. For any ¢ € C®(H?), we say ¢ €
S(HY) if the function ¢ satisfies the following
condition: For any N € Z,, we have

HSDHN

= sup (1 +d(l‘ayat>)N

(:E,y,t)EHd IalSN

Moreover we denote by S'(H?) the dual space
of S(H?) and we call it the space of the tempered
distributions on the Heisenberg group.

Let u € S'(H?) and ¢ € S(HY). Then we de-
fine the convolutions u * ¢ and ¢ * u as follows:

(ux @) = (u, ¢ @)

= /U(g) {/sﬂ(g’)%b(gg')dg’}dg, 9.9 € H'
and
(pxu,p) = (u, ¥ x p)

— /u(g) {/Sﬁ(gl)lb(g’g)dg’}dg, g,¢ € HY,

Z ‘Xa¢($ay’t)| < o0.
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where f(g) = f(g~ 1) for g € H.

5.2 The heat kernel method for the
space S'(H?)

Theorem 3 ([7]). For u € S'(H%), we put
Us(l‘,y,t> (u * PS)(‘rayvt) fOT (I’,y,t) €
HY and s > 0. Then the function
Us(z,y,t) satisfies the following four condi-
tions: (1) Us(z,y,t) € C®(MH? x (0,00)), (2)
(0/0s — Aga) Us(z,y,t) = 0, (x,y,t) € H? and
s > 0, (3) for any ¢ € S(H?), (u,¢)
limg— 40 Jga Us(@, y, t)o(x, y, t)dedydt, (4) there
exist i, v > 0 and a constant C' > 0 such that

Us(a,y, 1) < Cs™H(1 + d(,y,1))"

for0< s <1, (x,y,t) € H.

Conversely every Ug(x,y,t) € C®(H? x
(0,00)) satisfying the conditions (2) and (4)
can be expressed in the form Ug(x,y,t) = (u *
Py)(x,y,t) with the unique element u € S'(H?),
where Py is the heat kernel associated to the sub-
Laplacian Aga.

5.3 The Schwartz kernel theorem for
the space S'(HY)

By Theorem 3, we can prove the following
Schwartz kernel theorem for the tempered distri-
butions on H¢ similarly as Theorem 2 (in detail,
see [15]).

Theorem 4 ([15]). Let k be a continuous linear
operator from S(H®) to S'(H%™). Then there
exists T in S'(H% x H9%) such that

(kp,0) = (T, 0 ® ) = / / T(91.92)0(91)1(92)dg1 dgs,

where ¢ is in S(HN) and 1 is in S(H2).
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