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An Algorithm for Identitfying All Hinge Vertices
on a Circular Permutation Graph

Hirotoshi HONMA!

Yoko NAKAJIMA!

Abstract: Let G5 = (Vs, Es) be a simple connected graph. A vertex u € Vs is
called a hinge vertex if there exist any two vertices « and y in G5 whose distance
increase when w is removed. Finding all hinge vertices of a given graph is called the
hinge vertex problem. These problems can be applied to improve the stability and
robustness of communication network systems. In this study, we propose a linear
time algorithm for the hinge vertex problem of a circular permutation graph.
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1 Introduction

Let Gs = (Vi, Es) be a simple connected graph with
V] = n and |E| = m. A vertex u € V; is called a
hinge verter if there exist any two vertices = and y
in G4 whose distance increase when u is removed. A
graph without hinge vertices is called a self-repairing
graph. Articulation vertices are a special case of hinge
vertices in that the removal of an articulation vertex
u changes the finite distance of some nonadjacent ver-
tices  and y to infinity. Finding all hinge vertices of a
given graph is called the hinge vertex problem. There
exists an O(n?) time algorithm for solving the hinge
vertex problem of a simple graph. These problems
can be applied to improve the stability and robust-
ness of communication network systems [1].

In many cases, more efficient algorithms can be de-
veloped by restricting the classes of graphs. Ho et
al. [2] presented an O(n) time algorithm for the hinge
vertex problem on permutation graphs, whose minor
error was corrected by [3]. Furthermore, for interval
graphs, Hsu et al. [4] presented an O(n) time algo-
rithm for the hinge vertex problem.

Let V, = [1,2,...,n] be a vertex set and P =
[p(1),p(2),...,p(n)] be a permutation of V,. A per-
mutation graph G, is visualized by its corresponding
permutation model M), which consists of two hori-
zontal parallel lines called the top channel and bottom
channel, respectively. Place the vertices 1,2,...,n on
the top channel, ordered from left to right, and simi-
larly, place p(1),p(2),...,p(n) on the bottom channel.
Next, for each i € V,,, draw a straight line from 4 on
the top channel to ¢ on the bottom channel. Then,
an edge (4,7) in G, exists if and only if lines ¢ and j
intersect in M. An example of a permutation model
M, and its corresponding permutation graph G, is
shown in Fig. 1. Permutation graphs are an impor-
tant subclass of perfect graphs, and they are used for
modeling practical problems in many areas, such as
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Figure 1: Permutation model M,, and graph G,,.

biology, genetics, very large scale integration (VLSI)
design, and network planning [5].

Clircular permutation graphs properly contain a set
of permutation graphs as a subclass. Rotem and Ur-
rutia first introduced circular permutation graphs and
provided an O(n?37%) time recognition algorithm [6].
Lou and Sarrafzadeh showed that circular permu-
tation graphs and their models have several appli-
cations in VLSI layout design [7]. They presented
an O(min(énloglogn,nlogn) + |E|) time algorithm
for finding a maximum independent set of a circu-
lar permutation model, where ¢ is the minimum de-
gree of vertices in the corresponding circular per-
mutation graph. Furthermore, they presented an
O(nloglogn) time algorithm for finding the maxi-
mum clique and the chromatic number of a circular
permutation model. Subsequently, the recognition al-
gorithm was improved in O(m + n) time by Sritha-
ran [8].

In this study, we propose a linear time algorithm
for the hinge vertex problem of a circular permuta-
tion graph. The rest of this paper is organized as
follows. Section 2 describes some definitions of circu-
lar permutation graphs and models. Section 3 intro-
duces the extended circular permutation model and
its properties. Sections 4 consider algorithms that ad-
dress hinge vertex problem and the complexity of this
algorithm. Section 5 concludes this paper.
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Figure 2: Circular permutation model CM.

2 Circular Permutation Model
and Graph

We first illustrate the circular permutation model be-
fore defining the circular permutation graph. There
exist inner and outer circles C7 and Cs with radii
r1 < re. Let CP = [ep(1),ep(2),...,cp(n)] be a per-
mutation of integer sequence [1,2,...,n]. Further-
more, cp~1(i), 1 <i < n, denotes the position of the
number ¢ in CP. Consecutive integers i, 1 < i < n,
are set to be counter-clockwise on C;. Similarly, cp(i),
1 <7 < n, is set to be counter-clockwise on Cy. For
each i, 1 < ¢ < n, draw a chord joining the two i’s, one
on Cy and the other on Cs, denoted as chord i. The
geometric representation described above is called a
circular permutation model CM. Figure 2 illustrates
an example of CM with 12 chords constructed by
CcP = [11,1,5,10,2,7,6,9,4,8,3,12]. This model is
considered to be proper if any two chords ¢ and j
intersect at most once in the CM. In this paper, we
consider only proper circular permutation graphs and
models, and therefore, the word “proper” is omitted
henceforth.

Next, we introduce circular permutation graphs.
An undirected graph G is a circular permutation
graph if it can be represented by the following circu-
lar permutation model CM: each vertex of the graph
corresponds to a chord in the annular region between
two concentric circles C7 and Cs, and two vertices
are adjacent in G if and only if their corresponding
chords intersect exactly once [6]. Figure 3 illustrates
the circular permutation graph G corresponding to
CM shown in Fig. 2. In this example, {2,4,8,10} is
a hinge vertex set.

Next, we consider a fictitious chord @ which con-
nects the point a’ that is placed between 1 and 12 on
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Figure 3: Circular permutation graph G.

C; and point @” on Cy. A chord that intersects @ is
called a feedback chord. The set of all feedback chords
is denoted by F'. Moreover, a set of feedback chords
that intersect @ in clockwise is defined as F'~, and a
set of feedback chords that intersect @ counterclock-
wise is defined as F*. We must place point o on
Cy so that |[F~| = |FT| is satisfied. In the example
shown in Fig. 2, point a” is placed between 3 and 12
on Cy. Consequently, F' = {3,4,11,12}, F~ = {3,4}
and F* = {11,12}. If a fictitious chord @ exists that
does not intersect any chord in CM, a model formed
by opening CM along @ is equivalent to a permuta-
tion model. This problem can be solved by applying
Ibarra et al.’s algorithm [9] because this problem is
the same as that of permutation graphs. In this pa-
per, we assume that any fictitious chord intersects at
least one chord.

3 Extended Circular Permuta-
tion Model

In this section, we introduce an extended circular per-
mutation model ECM that is constructed from a CM.

Let n be the number of chords in CM. First, a point
a’ is fixed between 1 and n on C7. Next, we consider a
fictitious chord @ with |[F~| = |F*|. In Fig. 2, we ob-
tain |F'~| = |F*| = 2 by placing point a” between 3
and 12 on Cy. ECM is formed by opening CM along
a. ECM consists of two horizontal parallel lines L,
and L, called top and bottom channels, respectively.
The top channel L, is assigned the consecutive num-
ber i, —n+1 < i < 2n, from left to right. The bottom
channel Ly is assigned p(i), —n+1 < i < 2n, from left
to right. Here, p(i), 1 <14 < n, on Lo, is assigned a cp
value on Cy in the counter-clockwise direction from
point a”. Next, p(i), 1 < i < n, changes to p(i) — n
if i € F'T. Furthermore, p(i), 1 < ¢ < n, changes to
p(i) +n if i € F~. We execute p(i —n) = p(i) —n
and p(n 4+ i) = p(i) + n for 1 < i < n. For each
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Figure 4: Extended circular permutation model ECM.

—n +1 <1 < 2n, a straight line is drawn from 7 on
L, to i on L. After executing the above process,
ECM is constructed from CM. Figure 4 illustrates
ECM constructed from CM shown in Fig. 2. Here,
p~1(i) denotes the position of i on Ls.

Circular permutation and circular-arc graphs are
circular versions of permutation and interval graphs,
respectively. Moreover, as mentioned in Section 1,
circular permutation and circular-arc graphs are su-
perclasses of permutation and interval graphs, respec-
tively. Efficient algorithms have been developed that
address various problems concerning permutation and
circular-arc graphs. However, in general, problems for
circular graphs tend to be more difficult than those
for non-circular graphs. One of the reasons is that we
can not uniquely determine the starting position of
an algorithm for a circular graph due to the existence
of feedback elements although it can be fixed for a
non-circular graphs.

For several problems, we can develop circular ver-
sions of the existing algorithms by constructing ex-
tended intersection models of the problems. By us-
ing extended intersection models, we can determine
a start position of algorithm uniquely and apply par-
tially the algorithms of the non-circular versions. For
instance, this method has been applied to develop
efficient algorithms for the shortest path query prob-
lem [10, 4], the articulation vertex problem [11] on
circular-arc graphs, maximum clique and chromatic
number problems [7], the spanning forest problem [12]
on circular-permutation graphs. In this paper, we use
ECM to construct an efficient algorithm for the hinge
vertex problem.

Properties 1 and 2 stated below, can be derived in
a straightforward manner from the processes of con-
structing ECM.

Property 1 Linesi—n, i, and i +n in ECM corre-
spond to the vertex i in G.

Property 2 Let i and j (i < j) be two vertices in
G. Then, vertex i is adjacent to j if and only if lines
i and j, or lines i and j — n, or lines i +n and j
intersect in ECM.
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Some notations that form the basis of the algo-
rithms in sections 4 and 5 are defined as follows:
The set of all lines that intersect line ¢ in ECM is
denoted by N(i). In addition, N[i] = N(i) U {i}.
For line ¢ in ECM, the following functions are de-
fined: TR(i) = max{ j | j € NJi]} and STR(i) =
max{ j | j € (N[i] \ TR() U {i}}. Dr(i) = { k |
STR(i) < k < TR(i)}. TL(i) = min{ j | j € NJi]}
and STL(i) = min{ j | 7 € (N[i] \ TL(7)) U {i}}.
Dp(i)={k|TLG) <k <STL(3)}. BR(i) = k such
that p~1(k) = max{ p~1(j) | 5 € N[i]}. BL(i) =k
such that p~1(k) = min{ p~1(j) | j € NJi]}. Table 1
shows T R(i), STR(i), Dg(i), TL(3), STL(i), D (i),
BR(i), and BL(3) for ECM shown in Fig. 4.

4 Algorithm for Hinge Vertex
Problem

In this section, we present Algorithm HVC for finding
all hinge vertices of circular permutation graphs. A
vertex u is considered to be a hinge vertex if there
exist any two vertices x and y in G whose distance
increase by removing u.

4.1 Properties of Hinge Vertex

The following Lemma 1 proposed by Chang et al. [13]
characterizes the hinge vertices of a simple graph G,.

Lemma 1 ([18]) For a simple graph G, a vertex u
s a hinge vertex of G if and only if there exist two
nonadjacent vertices x < y such that u is the only
vertex adjacent to both r and y in Gj.

Lemma 2 provides the necessary and sufficient con-
dition for hinge vertices in a permutation graph pre-
sented by Ho et al. [2].

Lemma 2 ([2]) Let G, be a permutation graph cor-
responding to a permutation model My,. A wvertex u
is a hinge vertex of G, if and only if there exist two
vertices x < y; such that either of the following con-
ditions holds in My:
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Table 1: Example of TR(i), STR(i), TL(i), STL(i), BR(i), BR(i), A(i) and B(%)
% -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
p() -3 4 -4 3 0 -1 1 5 10 2 7 6 9 16 8 5 12 11 13 17
p i) |3 7 2 1 3 6 0 2 4 8 7 11 9 5 14 13 15 18 12 10
TR(%) -2 -2 4 4 4 10 4 4 5 10 10 16 10 10 16 16 16 22 16 16
STR(i) | -3 -2 3 3 3 5 3 4 5 7 7 10 9 10 15 15 15 17 15 16
Dr(i) 6..9 89 89 11..15
TL(7) 4 -10 -1 -1 1 2 -1 -4 2 6 6 8 8 2 1 11 13 14 11 8
STL(i) | -3 -6 -1 0 1 2 0 -1 5 6 7 8 9 6 11 12 13 14 14 14
Dy1(i) 3.2 34 3.5
BR(i) -4 -4 -1 -1 1 2 2 2 2 6 6 8 8 8 11 11 13 14 12 11
BL(i) -2 -2 4 4 4 4 4 4 5 10 10 10 10 10 16 16 16 16 16 16
(1) u = TR(x) for y € Dgr(z) and p~'(BR(x)) < BRx) X s7R@x) y u=TR(x) xtn
-1 N -
(2) u = TL(y) for x € Dr(y) and p~l(z) <
—1
P~ (BL(y))-

Let G = (V, E), |V| = n be a circular permutation
graph corresponding to a circular permutation model
CM, and ECM be an extended circular permutation
model constructed from CM. Lemmas 3 and 4 follow
from Lemmas 1 and 2, respectively.

Lemma 3 A vertex w = TR(x) is a hinge vertex of
G if there exist two vertices x < y € V satisfying
y € Dg(z), p~'(BR(z)) < p~'(y), TR(y) < = +n,
and p~'(BR(y)) < p~'(x + n) in ECM.

(Proof) (=) If w is a hinge vertex of G, by
Lemma 2, v = TR(z), STR(z) < y < TR(z), and
p~ 1 (BR(z)) < p~!(y) in ECM. This indicates that
line x does not intersect line y and w is the only line
intersecting both lines « and y in FCM (Fig. 5). As-
sume that TR(y) > z+nor p~Y(BR(y)) > p~(z+n).
If TR(y) > x+mn, the line T R(y) intersects both lines
y and x + n. Note that line z + n is a copy of line
x. That is, both lines x + n and x correspond to the
same vertex x. This contradicts the assumption that
u is the only vertex adjacent to vertices x and y in
G. Furthermore, if p~'(BR(y)) > p~'(x + n), line
BR(y) intersects both y and x + n. This is found to
be contradictory to the assumption. Thus, necessity
is satisfied.

(«<) By Lemma 2, if w = TR(z), y € Dgr(z), and
p Y (BR(z)) < p~1(y), u is the only line that inter-
sects both lines x and y in ECM. Furthermore, as
TR(y) < z+nand p~Y(BR(y)) < p~'(x+n), no line
intersects both lines y and x + n. This implies that
vertex u is the only vertex adjacent to both vertices
z and y in G. Therefore, sufficiency is satisfied. O

Lemma 4 A vertex u = TL(y) is a hinge vertex of
G if there exist two vertices x < y € V satisfying
x € Dr(y), p~'(z) < p~'(BL(y)), y —n < TL(x),
and p~(y —n) < p~Y(BL(z)) in ECM.
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u=TR(x), STR(x) <y < STR(x), p"(BR(X)) <p" (),
TRY) < x+n, and p(BR®)) < p ' (x+n)

Figure 5: Example of Lemma 3.

(Proof) Lemma 4 is symmetric to Lemma 3. Hence,
its proof is similar to that of Lemma 3. O

We show an example where vertex 4 is recog-
nized as a hinge vertex by applying Lemma 3. In
Fig. 4, for x = 8 and y = 13, y = 13 € Dg(x) =
{11,12,13,14,15}, p~Y(BR(z)) = 14 < p~!(y) = 15,
TR(y) =16 < (x +n) = 20, and p~}(BR(y)) = 15 <
p~(z +2) = 23 hold. Hence, TR(z) = TR(8) = 16
is a hinge vertex for 8 and 13 by Lemma 3. Normal-
ization indicates that vertex 4 is a hinge vertex for 8
and 1.

4.2 Analysis of Algorithm HVC

The algorithm for finding all articulation vertices of
a circular permutation graph is described formally in
Algorithm HVC.

Next, we analyze the complexity of Algo-
rithm HVC. In Step 1, we construct a circular per-
mutation model FCM that can be executed in O(n)
time. TR(i), STR(i), and BR(i) are computed in
Step 2. TL(i), STL(i), and BL(i) are computed
in Step 3. Preprocessing steps 2 and 3 take O(n)
time [13]. Steps 4 and 5 find all hinge vertices by ap-
plying Lemmas 3 and 4, respectively, and they run in
O(n) time. After executing Step 5, all hinge vertices
of a circular permutation graph are correctly found.
Hence, we have the following theorem:

Theorem 1 Algorithm HVC can solve the hinge ver-
tex problem of a circular permutation graph in O(n)
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Algorithm 1: Algorithm HVC

Input: CP = {p(1),p(2),...,p(n)} of a circular
permutation graph G.

Output: Hinge vertices of G.

(Step 1)

Construct ECM and compute p~1(i);

(Step 2)

Compute TR(i), STR(i), BR(7) for 1 <¢ < n;

(Step 3)

Compute TL(3), STL(i), BL(7) for 1 <i < m;

(Step 4) /* Compute hinge vertices */ ;

for each y € Dr(z) do
if p~Y(BR(z) <p~(y), TR(y) < +n and
p ' (BR(y)) < p~!(x + n)) then Normalize
TR(x) to obtain the hinge vertex ;

end

(Step 5)

for each x € Dy (y) do
if p~1(z) < p~Y(BL(y)), y —n < TL(z), and
p~t(y —n) < p~1(BL(z)) then Normalize T'L(y)
to obtain the hinge vertex ;

end

Function Normalize v{

if v<1lthenv:=v+n;
if v >nthenv:=v—n;
return v ;

}

time.

5 Concluding Remarks

In this study, we presented an algorithm that runs
in O(n) time to find all hinge vertices of a circular
permutation graph. Our algorithm partially uses Ho’s
algorithm [2]. In future, we will continue this research
by extending the results to other classes of graphs.
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