ik T3 SR M AR 285487 (P 274F)

The parameter space and Hyper-surface regularization of Feynman

integrals

Atsushi Sato*
Kushiro National College Of Technology Otanoshike-nishi 2-32-1,
Kushiro City, Hokkaido 084-0916, Japan

October 31 ,2014

Abstract

We showed the basic mathematical features of our new parameter space and its applications
to Feynman integrals in the previous paper last year. In this paper we correct and modify a few
ambiguities and mistakes in my paper of twelve years ago and present a new regularization of
Feynman integrals applying our parameter space and the integral method to the calculation of
K2 — 27 decay width. Furthermore we discuss how to establish the integral domain in Feyn-
man integral, comparing the results of our calculations with the data of K% — 2v decay and
then using another useful method of Feynman integral calculations, the so called Davydychev

method.
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1 Introduction

In the previous paper we discussed the fun-
damental mathematical features of our new pa-
rameter space and their applications to Feynman
integrals last year [1]. In section 2 we correct and
modify a few ambiguities and mistakes in my pa-
per of twelve years ago [2], and present a new
regularization of Feynman integrals and we will
call this regularization Hypersurface regulariza-
tion, applying our parameter space and the inte-
gral method to the calculation of K g — 27 decay
width. In section 3 we try to calculate the decay
width of the same process as section 2 by taking
the different integral domain and compare the
result of this calculation with the experimental
data . We can understand that the result of the
calculation in section 3 does not coincide with
the experimental data, though the result in sec-
tion 2 coincides with the data precisely. I think
it is a very important result. In section 4 we use
Davydychev method [5][6] to calculate the same

Feynman integral and try to compare the result
of the calculation with the results in section 2
and in section 3.

2 The application of this pa-
rameter transformation to
K? — 27 Decay

At first we review the topics of my paper pub-
lished twelve years ago, and correct mistakes of
the sign and the variables [2]. Further we ex-
plain the mathematical meanings of the integral
method and the parametrization as a new regu-
larization.

We calculate I'(K? — 2v)/T(K? — 77n7) as

the application of our new parameter transfor-
mation.
In Fig.1 we show the diagrams we have to cal-
culate, where we neglect a possible diagram that
an outgoing photon emits out of the bottom of
the incoming particle K2 [3].
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The amplitude is the following ,
2ge 6(1)6(2)
< p1,p2|Slps >= 0% (p1 + S
pl p?‘ ‘pS (pl p2 )(2p V)1/2 (2p20V)1/2(2p30V)1/2
% [/d4q Z(2Q+p1))\l(2q_p2)u (1)
[(q +p1)? — p? +ie][q? — p? +i€][(q — p2)? — p? + i€]

1
[(g+p1)? = p? +i€ll(g = p2)® — 4 + 'ie]]’
(i)

where p;, ¢ are momenta of particles and ¢, is the polarization vector of photon.

+dun / d4q

If we assume (e(Vgq)(e®@q) = (6(1)6(2)&((]2 + F(s1)) and (eWpy) = (e@py) =0,
we have

S _ 464 2962 (6(1)6(2)) 2
< p1,p2|Slps >= (27)"6" (p1 +p2 —p3) (2p10V)1/2(2p20 V) 1/2(2p30 V) 1/2 [_M 1(q) +F(31)I(Q)}, (2)
where

1 1

4
9= (2m)* / T p = 12 il — 17 + il - pa)? — W2 ] ®)
We used Lorentz condition since the real photons are transverse waves and they fulfill Lorentz
condition. The function F(s;) is added in order that (e q)(e(?)q) isn’t gauge invariant and it is a
function of the momentum square of K? meson p3 = s;. We have to calculate this integral (3) in
Euclidean space to use our new parameter transformation. Then we transform Euclidean metric
into Bjorken-Drell metric. In Euclidean momentum space the equation (3) is expressed as follows:

/ o
2m)* J (g +p1)?+ p?g? + p3[(g — p2)? + p?]

We use our parameter transformation to the integral (4) in 2w-dimensional momentum Euclidean
space,

-1

I(q) = (4)

3 Qw
o = I / e [ dexpl=(at 4 it (a2 + )t = (0 =) + )t
d2w
= 27T2w H/ dtz
x exp|— th P1t23— p2t3)2 n (P12 3—102t3)2 _ (23: t)u?). (5)

i=1li i=1li =
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We shift the momentum q from q to ¢ = ¢ + pg p2tt37
=1
de ! o t
1) =i [ 5 H/ doxp] - ()@ + PP (S
=1 =1 " i=1

We perform the 2w dimensional gaussian integral with respect to q’.
The result is

I(p;) :—ZH/ 4”2‘4 1tz) dtiexp[(ﬂlw_—2753 Zt ] (7)

1tZ

We adopt the parameter transformation and its Jacobian [2],

t1,to, ts
J;l—ztza Q?Q—tg/ztl, $3—t3/zt and %):.’L‘% (8)

(:L‘la x2, I3)

Then the equation (7) becomes as follows:

I(p) = —i(4m)™¥ /Ooo dxy /01 dzo /01 dxgx%_” exp(—z1S(x,p)), 9)

where

S(z,p) = p? —2p1pazoxw3 = p? — 811223, and s1 = (p1 +p2)? = 2p1pa = P2 expresses Mandelstam
variable, and p? = p3 = 0 because the external photon masses are 0.
In this stage we replace Euclidean momentum space with Minkowski momentum space, that is
S(z,p) = —p? + 2p1pawozy = —p? + S1T2T3.
If S(z, p) is positive, the integral with respect to z1 converges. Estimating p? and s; at pion mass
squared p? = 0.0195Gev? and kaon mass squared s; = 0.248Gev?, S(xz,p) is positive in the region
0<zyg <land 0<x3 <1 as we can see that in Fig.2.

(S < 0)region

(S > 0)region

0\ 1 o

Fig.2

Changing the integral variable x; from z7 to y = S(z,p)x1, because dry = S(#

) dy, the equation
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(9) becomes as follows:
1
1 i(4m) d d d . 10
) = =it [y [ dos [ ot exp-n) g (10)

Then we perform the gamma integral concerning y.
The result is

I(p) = —i(4m)~“T'(3 — w) /01 dzs /01 dsS (. p)* =3 = —i(4m)“I(s1). (11)

When we take the limit w — 2, because there are not any singularities with respect to w in the
integrand, we can put w = 2. This means analytic continuation from 2w dimensional space to 4
dimensional Minkowski space. Performing the z9, x5 integration, the result is

. 1 1 1 Sq
I(s1) = —_-log |u?|log le| + 5o |u?| log |e] — ngQ(?) (e = 40)
1 S1
= _gLiQ(F)a (12)
where
Z log |1 — ul
Liy(z) = —/ ———du (13)
0 U

is the so called Dilogarithm function. As you well know , in the first line of the equation (12) the
first and the second terms are canceled out against each other and we can get rid of the divergence
which causes from the lower limit of the integral . Furthermore we can represent the result of the
integration in terms of gamma function and dilogarithm function.

The transition amplitude is defined as follows:

44 2ge?
< P17PZ|S|P3 > = (27T) ) (p2 +P1 _p3) (2p10V)1/2(2p20V)1/2(2p30V)1/2
2 1
x <—z‘>§—1<47r>—2<e<”e<2>>(Ln(sl/u?) - f(sl)Liz(sl/;ﬂ)). (14)

Finally we have to calculate decay width T'(K? — 27),

1 V
DD = 2) = 3¢ %32 [

2
5 [ @p|<pipalSios > (15)

Taking K? rest frame for simplicity, as final photons are massless,
the calculation [ d®p; [ d®pa6*(ps — pa — p1) is trivial. We find

2.2

DK — 27) = 116(9 E B Lalo1/i) = S PG Lals1 /i) IR, (19
51 ® pol

We expand Ljs(z) to Taylor Series,

s1 X x"
z2( ):nz:lﬁw 51/ (17)
2
We assume Z‘e(l) . 6(2)‘ = 1/4 and our term N%F(S1)Li2($1//t2) to the following ,
pol
1 9 = z"
FF(Sl)LiQ(Sl/M )=> p:y ML (18)

n=3



The parameter space and Hyper-surface regularization of Feynman integrals

We can get the final result of the decay width I'(K? — 2v),

2,.2,.4
(Y = 29) = 8 (Rt ) - (s Lalsa /) (19)
m)>8,

In Ref.[4], the decay width for K? — n 7~ is given as

P(KY = rta) = (%)48%/2(1 - 43—“12)1/2. (20)
1

Therefore we have the ratio I'(K? — 2v)/T'(K? — 77 ~),

2
S
INKY = wtr—) 8 x (2m)? ( _ ﬁ)l/f

S1
We can estimate the numerical value of T'(K? — 27)/T(K? — nt77)
with

2
a= = 1;)—7, 51 = 0.248GeV? (kaon mass squared), u? = 0.0195GeV? (pion mass squared) .
The result is 0
'K 2
Ky = 27) 556 % 107, (22)

I'(K? — ntn—)

This result is consistent with experimental data.

3 The calculation of Feynman integral in another integral domain

In this section we try to calculate Feynman integral in another integral domain. The integral
domain isn’t determined uniquely. We introduce the constraint Z —ox; = 1 exactly in Feynman
integral. The equation(9) is modified as follows:

4

I(p) = —i(4m)™ /Ooo dzy /01 dzo /01 dzs /01 d$45( Zw) “exp(—z15(z,p)), (23)

1=2

where S(z,p) = —p? + 2p1pewozs = —p? + s1wo23, and x4 = tl/(zg’:1 t;). At first we calculate
the integration concerning variables z7 and 24 . We can get I'(3 — w) by integrating on the variable
z1 like section 2 . Because the integration on x4 is the integration of Dirac’s § function , it is very
easy. When w moves in close to 2, because I'(3 — w) doesn’t have any singularities, we can do the
analytic continuation from any w to w = 2. Therefore I'(3 — w) =I'(1) = 1. For short we omit the
coefficients before the integration,

. 1 1—x2 dx?)
Moy = [ o [T 2
(1) 0 ? 0 —p? + 510213 (29

Subsequently we have to calculate the integration on the variable x3. The integral domain becomes
0 <xz3 <1— x5 as the result of the integration of §(1 — ZQLQ x;) ,

~ 11—z 11—z
I = d _— = d
(31) / 332/ —M —|— S1T2T3 / 2 0
1 1 rl
= — | —log|p® — s1@o + s123| dzg — — (logu ) dzo (25)
31 0 T2 S1J0 X2
= — " dz, (logsl—{—log‘— —zo+ D—I—ilog(ug)loge (e = 0)
s1Jo w2 217 s '



i T3S AR B ER48 T (TI2T4E)

Putting
12
73— w2+ — =(z2 = B) (@2 — ), (26)
1
we obtain ‘
144/1 42 1— /14
= 5 L and y= 2 2 (27)
where
12
B+~v=1, and py= P (28)
1
Substituting the equation (26) in the equation (25), we can get
- 1 r! 1 u?
I1(B,v) = 3—/ —log(ﬁ — o) dry + — / —log — zg) dzy + S—logelog‘s—‘ (e = +0). (29)
1 Jo 1 1

Furthermore we can express the equation (29) with Dilogarithm functions as follows:

i) = 1 limgw—w2¢w -—/ 1%ﬁ+b41——)ym2

s1 Jo p
bg(l—'ﬁ)

Z2

1 -1
= —logﬂ{logxg} +$1/0 dzs :S—llogﬁlog(e) (30)

7 log(1 — -1 1

u
And similarly

. 1 11 -1 1
I(y) = — — log(y — z2)dzy = — logylog(e) — —Lj2(1/7y) (e — 40). (31)
s1 Jo 2 $1 s1

Putting the equation (30) and the equation (31) into the equation (29), we have

. . . 2
I(s1) = I(B)+1(y)+ ilogelog(/;—l)

1 w1 1 1 1
= -log(e)log (')~ —log(e) log f — —Lix(1/8) - log(e) logy — —Lin(1/)

2
- ilog(e) IOg(S?ﬂy)_i[LiQ(l/ﬁ)-l-LiQ(l/v)] (e — +0). (32)

Because fy = p?/s1, so that log( 1B 7) log 1 = 0. In this way we can regularize Feynman integral
here because the divergence term which occurs from the lower limit of the integral is eliminated

and the result of the integral is expressed in the form of Dilogarithm function.
The final result is the following,

~ 1
I(s1) = = [La(1/8)+Lia(1/7)], (33)
where Lj>(1/8) and L(1/7) are Dilogarithm functions defined as follows again:
Z log(1 —
Lm@:—/-%%;@m. (34)
0

Finally we have to estimate the value of I'(K9 — 27)/T'(K2 — 777 ~) as the same as section 2 .
We can obtain

_l’_

1 1 B4y s L1yl 1y 1psf 29
By By w¥ 4(52+72)_4[M4 ;ﬁ} (#)
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from the equation (28). Furthermore taking

1 - 1 1 1 1 - S1 S1

Lia(1/B) + Lia(1/) = 5 F (1) [Liz(1/B) + Lia (1) = g+ 4 15+ 15 = 5 (14 5.5) > B39

and adopting s; = 0.248GeV?(Kaon mass squared) and p? = 0.0195GeV? (pion mass squared), the
estimation of the value is the following,

2 2 2
1 1 1 1 s s
MK 2y o (Fritapss) e ww(ltsE) (37)
NKY - ntr—) 8 x (2m)? (1 B M)1/2 8 x (2m)2 (1 B @ﬁ)l/? ' '
S1 S1

It seems that this result is not consistent with experimental data. But more rigorous estimations
will be needed.

4 The calculation of the Feynman integral by Davydychev method

This time we try to calculate Feynmann integral (3) using the Davydychev method [5][6]. This
method is independent of the integral domains unlike the calculation in section 2 and section 3,
although we can take several integral contours. Furthermore we can express the results of the
calculations by using hypergeometric functions. Therefore we can do analytic continuation to the
several domains and express the results with the convergent series easily,too.

At first from the equation (3) we have

deq
(¢ — 12+ i€][(qg + p1)? — p? +i€][(q — p2)? — p? +ie]

From now on we drop %e for simplicity, namely we carry out the calculations on the pseudo Euclidean
momentum space.
The equation (38) is

J3(1717]-7:u‘):

_/ d**q _/ d*q

e = wlla+ ) —llla —p2)® = w7 T 2(1 - ) [(g +p1)? — w2[(g — p2)? — 2]
(L e d*q

- | 00 ) e )

because 1/(1 — ‘;—;): 720 %(‘q‘—;)y, where (1); =1 x2x...xj=j! from (a); = (a) X (a +

)x---x(a+j—-1).
Next we exploit Mellin Barnes integral representation of | Fy as follows:

2 ; 2
N R _ By
1Fo(1; q2)_ = [imr( V)1 + ) ( q2) dv. (40)
The equation (39) becomes
1 100
(1,1, 151) = _,/ doT (=) T(1 + 0) (=) Jo(1 + v, 1, 1; 1), (41)

where Jo(1 4 v, 1, 1; u) is, referring the equation (29) in [1],

deq
(¢*)**[(g +p1)? — p?]l(q — p2)* — 4]

JQ(l +7)7 15 17/“”): /
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= ﬂwz'lf%(—u?)wwf?’[r(wu 2m / / / dsdtdul’ (—s)T(=t)['(—u)

X(_ﬁ)s<_ﬁ)t(_s_l)ur(v+3—w+s+t+u)r(1+u+s+t)
2 2 2

1 1 1 MNw+s+t+u)
XI‘(1+s+u)F(1+t+u)I‘(w—1—v+u) (42)
I['(2+ s+t + 2u) '
Substituting the equation (42) in the equation (41), we have
J3(1,1,1; p)= w3t = 2 (—p?) / / / / dvdsdtdu
2m
—1
x(=p?) " [D(1+v)]  T(=0)D(1+v)(~p?)" (43)
2 2
PINS( _ Pa\t( _ S1\
XT(=s)T(-t)(-u)( - =) (- =) [ - =
(-2) (-2) (- 2)
o Fv+3-w+s+t+uw)l(1+v+s+t)
Nw+s+t+u)
o 'l+s+u)ll+t+u)l(w—1—v+u)
I'(2+s+1t+ 2u) '
Utilizing Barnes formula [7]
i g= T(a+c)l(a+d)T(b+ c)T'(b+d)
— dsT’ r'(d F(c—s)I'(d—s) = 44
2m‘/,m sP(at s)Dd+s)l(e = a)I(d = ) T(a+b+c+d) )
we have
1 100
2—/ dil'v+3-w+s+t+u)l(v+1+s+t)I'(—v)[(w—-14+u—v)
T J—ioco
IB-wt+s+t+u)l@R+s+t+2u)[(1+s+t)(w+s+t+u) (45)

(34 2s + 2t + 2u)

because a =3 —w+s+t+u, b=14+s+t, ¢=0, d =w—14u, thereforea+c=3—-w+s+t+u,
a+d=2+s+t+2u, b+c=14+s+t, b+d=w+s+t+u,and a+b+c+d=3+2s+2t+ 2u.
Adopting the equation (45), we can perform the v variable integration in the equation (43) first of
all. Then we obtain

J3(1,1,1; )= 79172 (—p?) 2 7 / / / dsdtdu
s

XT(—s)(—)0(—u) - M_?Q)( - M_g) (- %)u
POts+ul(+t+ul@-wts+t+u)

T(w+s+t+u)l(2+s+1t+2u)
XF(2+s+t+2u)F(1++s+t)I‘(w+s+t+u)
(3—|—25—|—2t—|—2u)
= q@ql=2w(—y2)w-3 / / / dsdtdul’ (—s)T(—t)['(—u)
(2mi)3
2
P1)* Pz 51
X R M SR i, ST
(-2 (-2 (- )
XF(l+s+u)F(1+t+u)F(1+s+t)F(3—w+s+t+u)
I'(3 + 2s + 2t + 2u) '

(46)
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Im(s,t,u)
A

100

> Re(s,t,u)

(Z,jz) = (57j1)7 (t7j2)7 (u7j3)

. /N
= /| O

Fig.3

Next we can determine the positions of the poles in I'(—z) as follows:

T(ji+1-2)
A P A B S B D (—2)’ (47)
where (z, 5;) = (s,71), (¢, j2), (u, j3) respectively.
We carry out the residue calculations concerning the variables s,¢,u synchronously, taking the
integral contours on the right half planes as shown in Fig.3. Because it is known that the contour
integrals on the right semicircles of the radius R around the origin become 0 when the radius tends
to oo, the integral (46) becomes as follows:

L(1+ 51 +73)0(1 + g2 + 73)T(1 + 51 + j2)
J3(1,1,1;p) = 7@t =20 (— §j §j > Lo = —
—1)7 I(—1)7 I(—1) |
1=0 72=0 ] =0 ( 1) 1j1'( 1) 2.72'( 1) 3.73'
I'(3—w+j1+j2+ 73) piyii P32 S1\J3
x - - = -—) 48
1m+%+%+%ﬂ m)( 3 ( M) (48)

Now as we treat the emitted real photons, we have to introduce the mass shell conditions p? =
p3 = 0. Furthermore summing on j; and jo from 0 to co, j; =0, jo = 0 terms only remain .
Therefore the equation (48) becomes

i i(s_;)jsr(l +j3)D(1 + j3)D(1 + j3)

2 5l T3+ 273)
. 1= 1/s ‘3(1)‘3(1)'3(1)‘3
=i 3 5iGa) s, ()

where we used the formula (a); =ax (a+1) x(a+2) x...x(a+j—1)=T(a+7j)/I'(a) and put
w=2.
Using the formula [8]

@ =(39), (0 + 5),2" )

for(3)2j,, we can get
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(51)

where 3F(a,b,c;d,e;2) = 372 (j?ggjf(écj)] 2J is hypergeometric function. Adopting Clausen’s
formula [7]
1 1 12
3F5(2a,2b,a + b;2a + 2b,a + b+ X z):[gFl(a, b;a+b+ 2% (52)
and putting ¢ = %, b= % , we have
3 113 2
3F2(1,1,1,5,2,2):[2}71(5,5,5,2)] . (53)
As the relation
arcsiny/z = /z o} (1 L3 z) (54)
27272’
holds [7], we can obtain the result
2
9 2
J3(1,1,1; )= —i%(arcsin :ﬁ) . (55)

This equation (55) is effective under the condition s; < 4u2, that is to say, for heavy particles . In
the case of section 2 or section 3 we can’t use the equation (55) because of s; > 4u? . We'll need
to figure out a good way to handle such a situation by taking the other integral contours or doing

analytic continuation to the region s; < 4u? when we integrate the equation (46) .

5 Concluding Remarks

In this paper we tried to calculate Feynman
integral in two ways to establish the integral do-
main. While calculating it and using our new pa-
rameter transformation, we found the new reg-
ularization of Feynman integral concerning the
divergences from the integral lower limit z; = 0.
Furthermore the result of the estimation of the
ratio I'(K% — 2v)/T(K2 — ntm~) is consis-
tent with the experimental data using the inte-
gral domain 0 < z3 < 1, but it’s not consis-
tent with experimental data using the integral
domain 0 < z3 < 1 — z5. However our consid-
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