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Abstra
t

In the previous paper we showed that Davydy
hev method is useful when we 
al
ulate our

Feynman integrals. The results of the 
al
ulation are valid in the domains

1

=4�

2

< 1 . In this

paper we try to do analyti
 
ontinuation to the domain 4�

2

=s

1

< 1 . Furthermore we 
onsider

the way to 
al
ulate our Feynman integrals by taking the integral 
ontour of semi
ir
le on the

left half plane. This 
al
ulation is 
omplex a bit be
ause there are many singularities.
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1 Introdu
tion

In the previous papers we have showed the

new parameter transformation and the integral

te
hniques of Feynman integrals.[3℄[4℄ This new

parameter transformation was what we solved

S
hwinger parametrization equation in reverse

and generalized it.[1℄[2℄ Furthermore we showed

that the method to utilize Hyper geometri
 fun
-

tion is useful on the o

asion of 
al
ulation of

Feynman propagator. The advantages to make

use of Hyper geometri
 fun
tion are as follows,

(i) we 
an des
ribe the results of 
al
ulation by

means of the 
onvergent series, (ii) we 
an get

a few kind of integral representations of Hyper

geometri
 fun
tion easily, (iii) we 
an do the an-

alyti
 
ontinuation of Hyper geometri
 fun
tion

from one domain to another domain of variable

easily.[5℄[6℄[7℄ As a result we 
an study the math-

emati
al and physi
al features of the solutions in

the several regions. (iv) Hyper geometri
 fun
-

tions in
lude the important fun
tions whi
h ap-

pear in physi
s, for example, trigonometri
 fun
-

tion, spheri
al fun
tion, and so on, as the sub

fun
tions. The diÆ
ult points are (i) Sometimes

the 
al
ulations are so 
omplex rather than ones

by using the usual fun
tions. (ii) There are a lot

of undeveloped portions, espe
ially, in Kamp�e

de F�eriet fun
tion, Lauri
ella fun
tion, and so

on. But in these days from the 
al
ulations

of Feynman propagator the re
urren
e formulas

and the di�erential equations whi
h Hyper geo-

metri
 fun
tion obeys are being found. Last year

in the previous paper we 
al
ulated the Feynman

propagator in K

0

S

!2
 pro
ess by using Davydy-


hev method.[4℄ But we obtained the result that

be
ame e�e
tive on the 
ondition s

1

< 4�

2

, of

the so-
alled heavy parti
les 
ase. Namely it's

not e�e
tive in K

0

S

!2
 pro
ess. In this paper

we'd like to obtain the 
onsequen
es and the way

of the 
al
ulation to lead the e�e
tive result for

light parti
les. In se
tion.2 we review the Davy-

dy
hev method in the previous paper.[4℄[8℄[9℄ In

se
tion.3 we 
al
ulate Feynman propagator by

using 
ontour integral on the left half 
omplex

plane. In se
tion.4 we 
al
ulate the same in-

�

The part time le
turer of Applied Mathemati
s at National Institute of Te
hnology, Kushiro College , Mail

address of my own: py4a-stu�asahi-net.or.jp

1



tegral by using analyti
 
ontinuation and dou-

ble limit pro
edure of Hyper geometri
 fun
tion

2

F

1

(a; b; 
; z). In se
tion.5 we dis
uss the result

and propose the further progress of the 
al
ula-

tion in this paper as 
on
luding remarks.

2 The 
al
ulation of Feynman integral using Davydy
hev method

At �rst we'd like to review the 
al
ulation method of Feynman propagators shown by Davydy-


hdev and others, and that l wrote in my paper last year.[4℄ When we 
al
ulate the de
ay width in

the de
ay pro
ess K

0

S

!2
, we have to evaluate the following integral �nally,

J

3

(1; 1; 1;�) =

Z

d

2!

q

[q

2

� �

2

+ i�℄[(q + p

1

)

2

� �

2

+ i�℄[(q � p

2

)

2

� �

2

+ i�℄

; (1)

where p

1

and p

2

are four momentum of emited �nal real photons respe
tively, and �

2

is pion

mass squared. In su
h a pro
ess the mass shell 
ondition p

2

1

= p

2

2

= 0 is satis�ed. Getting

rid of in�nitesimal quantity i�, we perform the 
al
ulation in pseudo Eu
lidean mometum spa
e.

Furthermore the dimensional parameter is ! = 2� �. Using Hyper geometri
 fun
tion

1

F

0

�

1;

�

2

q

2

�

,

we 
an express Eq. (1) as

J

3

(1; 1; 1;�) =

Z

1

q

2

1

F

0

 

1;

�

2

q

2

!

d

2!

q

[(q + p

1

)

2

� �

2

℄[(q � p

2

)

2

� �

2

℄

: (2)

On exploiting Mellin Barnes integral representation of hyper geometri
 fun
tion

1

F

0

 

1;

�

2

q

2

!

=

1

2�i

Z

i1

�i1

�(�v)�(1 + v)( � �

2

)

v

dv; (3)

Eq. (1) be
omes

J

3

(1; 1; 1;�)=

1

2�i

Z

i1

�i1

dv�(�v)�(1 + v)

 

�

�

2

q

2

!

v

J

2

(1 + v; 1; 1;�); (4)

where J

2

(1 + v; 1; 1; �) is

J

2

(1 + v; 1; 1 + �) =

Z

d

2!

q

(q

2

)[(q + p

1

)

2

� �

2

℄[(q � p

1

)

2

� �

2

℄

= �

!

i

1�2!

h

�(1 + v)

i

�1

1

(2�i)

3

Z

i1

�i1

Z

i1

�i1

Z

i1

�i1

ds dt du�(�s)�(�t)�(�u)

�

 

�

p

2

1

�

2

!

s

 

�

p

2

2

�

2

!

t

 

�

s

1

�

2

!

u

�(v + 3� ! + s+ t+ u)�(1 + v + s+ t)

�(! + s+ t+ u)

�

�(1 + s+ u)�(1 + t+ u)�(! � 1� v + u)

�(2 + s+ t+ 2u)

: (5)

Substituting Eq. (5) in Eq. (4) yields

J

3

(1; 1; 1;�) = �

!

i

1�2!

(��

2

)

!�3

1

(2�i)

4

Z

i1

�i1

Z

i1

�i1

Z

i1

�i1

Z

i1

�i1

dv ds dt du

�(��

2

)

�v

h

�(1 + v)

i

�1

�(�v)�(1 + v)(��

2

)

v

��(�s)�(�t)�(�u)

 

�

p

2

1

�

2

!

s

 

�

p

2

2

�

2

!

t

 

�

s

1

�

2

!

u

�

�(v + 3� ! + s+ t+ u)�(1 + v + s+ t)

�(! + s+ t+ u)

�

�(1 + s+ u)�(1 + t+ u)�(! � 1� v + u)

�(2 + s+ t+ 2u)

: (6)
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In this stage, utilizing Barnes formula 
on
erning � fun
tion[10℄

1

2�i

Z

i1

�i1

ds�(a+ s)�(b+ s)�(
� s)�(d� s) =

�(a+ 
)�(a+ d)�(b+ 
)�(b+ d)

�(a+ b+ 
+ d)

; (7)

and further performing the integration 
on
erning variable v, we 
an obtain a beautiful formula

symmetri
al to variables s; t; u;

J

3

(1; 1; 1;�) = �

!

i

1�2!

(��

2

)

!�3

1

(2�i)

3

Z

i1

�i1

Z

i1

�i1

Z

i1

�i1

ds dt du�(�s)�(�t)�(�u)

�

 

�

p

2

1

�

2

!

s

 

�

p

2

2

�

2

!

t

 

�

s

1

�

2

!

u

(8)

�

�(1 + s+ u)�(1 + t+ u)�(1 + s+ t)�(3� ! + s+ t+ u)

�(3 + 2s+ 2t+ 2u)

;

where s

1

= (p

1

� p

2

)

2

is kaon mass squared of input parti
le.

Now we 
arry out the residue 
al
ulations 
on
erning variables s; t; u syn
hronously, taking the

integral 
ontours on the right half 
omplex planes. In these planes �(�s);�(�t);�(�u) only have

single poles on the right half 
omplex planes.

The result of the residue 
al
ulation be
omes

J

3

(1; 1; 1;�) = �

!

i

1�2!

(��

2

)

!�3

1

X

j

1

=0

1

X

j

2

=0

1

X

j

3

=0

�(1 + j

1

+ j

3

)�(1 + j

2

+ j

3

)�(1 + j

1

+ j

2

)

(�1)

j

1

j

1

!(�1)

j

2

j

2

!(�1)

j

3

j

3

!

�

�(3� ! + j

1

+ j

2

+ j

3

)

�(3 + 2j

1

+ 2j

2

+ 2j

3

)

 

�

p

2

1

�

2

!

j

1

 

�

p

2

2

�

2

!

j

2

 

�

s

1

�

2

!

j

3

: (9)

Be
ause we treat emitted real photons, we have p

2

1

= p

2

2

= 0 from the mass shell 
ondition. So

only the j

1

= 0; j

2

= 0 terms survive in Eq.(9). Now we 
an take ! = 2. This means the analyti



ontinuation from 2! dimension to four dimension. Therefore we have

J

3

(1; 1; 1;�) = �

2

i(��

2

)

�1

1

X

j

3

=0

1

j

3

!

�

s

1

�

2

�

j

3
�(1 + j

3

)�(1 + j

3

)�(1 + j

3

)

�(3 + 2j

3

)

: (10)

And on using Hyper geometri
 fun
tion, we have

J

3

(1; 1; 1;�) = �

2

i(��

2

)

�1

1

X

j

3

=0

1

j

3

!

�

s

1

�

2

�

j

3
(1)

j

3

(1)

j

3

(1)

j

3

2

�

3

2

�

j

3

(2)

j

3

 

s

1

4�

2

!

j

3

= �

i�

2

2�

2

3

F

2

 

1; 1; 1;

3

2

; 2;

s

1

4�

2

!

: (11)

Adopting Claussen's formula[10℄

3

F

2

 

1; 1; 1;

3

2

; 2;

s

1

4�

2

!

=

"

2

F

1

 

1

2

;

1

2

;

3

2

;

s

1

4�

2

!#

2

; (12)

and

ar
sin

r

s

1

4�

2

=

r

s

1

4�

2

2

F

1

 

1

2

;

1

2

;

3

2

;

s

1

4�

2

!

; (13)

we 
an obtain the following �nal result

J

3

(1; 1; 1;�) = �i

2�

2

s

1

 

ar
sin

r

s

1

4�

2

!

2

: (14)
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This equation is e�e
tive on the 
ondition s

1

< 4�

2

. In this 
ase be
ause of s

1

= 0:248GeV(Kaon

mass squared) and �

2

= 0:0195GeV(Pion mass squared) the 
ondition is not satis�ed. Therefore

we need to �nd out a good way to handle su
h a situation. In the following se
tions we'd like to

show the good ways by taking the other integral 
ontour or doing the analyti
 
ontinuation to the

region s

1

> 4�

2

when we evaluate Eq. (8).

3 The 
al
ulation by using 
ontour integral on the left half 
om-

plex plane

As we reviewed in the previous se
tion , the result of the 
al
ulation was e�e
tive on the 
on-

dition s

1

< 4�

2

. But at the 
al
ulation in phenomenon K

S

0

!2
 we have to obtain the result

of the 
al
ulation whi
h is e�e
tive in the region s

1

> 4�

2

. To get su
h a e�e
tive result, we

must extend the integral domain to the left half 
omplex plane in this 
ase of the 
al
ulation of

2

F

1

(1=2; 1=2; 3=2; s

1

=4�

2

). By doing that, we 
an gain the formula e�e
tive in the region s

1

> 4�

2

.

First of all Mellin Barnes integral representation of hyper geometri
 fun
tion

2

F

1

(a; b; 
; z) is ex-

pressed as follows,

2

F

1

(a; b; 
; z) =

�(a)�(b)

�(
)

1

2�i

Z

i1

�i1

�(a+ s)�(b+ s)�(�s)

�(
+ s)

(�z)

s

ds: (15)

Applying this formula to hyper geometri
 fun
tion

2

F

1

(1=2; 1=2; 3=2; s

1

=4�

2

), we have the following

formula

2

F

1

�

1

2

;

1

2

;

3

2

;

s

1

4�

2

�

=

�(3=2)

�(1=2)�(1=2)

1

2�i

Z

i1

�i1

�

�

1

2

+ t

�

�

�

1

2

+ t

�

�(�t)

�

�

3

2

+ t

�

 

�

s

1

4�

2

!

t

dt

=

1

2

p

�

1

2�i

Z

i1

�i1

�

�

1

2

+ t

�

�

�

1

2

+ t

�

�(�t)

�

�

3

2

+ t

�

 

�

s

1

4�

2

!

t

dt: (16)

Of 
ourse, doing 
ontour integral on the right half 
omplex plane returns Eq. (16) to the original

hyper geometri
 fun
tion

2

F

1

(1=2; 1=2; 3=2; s

1

; 4�

2

) again be
ause of the 
ontribution of the poles

from �(�t) only. This situation is the same as the 
onsideration of se
tion 2 entirely.

Now we perform 
ontour integral on the left half 
omplex plane as drawing the 
ontour in Fig.1,

and we show that we 
an derive the formula e�e
tive in the region s

1

> 4�

2

by doing su
h a 
ontour

integration. The positions of poles in the integrand are shown in Fig.1. It is understood from the

following formula

�

�

1

2

+ t

�

=

�

�

1

2

+ t+ n+ 1

�

�

1

2

+ t+ n

��

1

2

+ t+ n� 1

�

� � � � � �

�

1

2

+ t

�

; (17)

that the integrand has double poles , substituting Eq. (17) to Eq. (16), that is,

2

F

1

�

1

2

;

1

2

;

3

2

;

s

1

4�

2

�

(18)

=

1

2

p

�

1

2�i

Z

i1

�i1

 

�

�

1

2

+ t+ n+ 1

�

!

2

�(�t)

�

�

3

2

+ t

��

1

2

+ t+ n

�

2

�

1

2

+ t+ n� 1

�

2

� � �� � �

�

1

2

+ t

�

2

 

�

s

1

4�

2

!

t

dt:
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Re(t)

iIm(t)

0

�

1

2

�

3

2

�

5

2

�

1

2

� n

R

Fig.1

�i1

i1

The residue of integral 
on
erning the double poles is 
al
ulated as follows,

residue

h

t = �n�

1

2

; Integrand

i

= lim

t!�n�

1

2

"

d

dt

��

t+ n+ 1=2

�

2

Integrand(t;n)

�

#

= �

d

dn

"

�(n+ 1=2)

�(1� n)

�

(�1)(�2)� � �� � �(�n)

�

2

 

�

s

1

4�

2

!

�n�

1

2

#

(19)

= �

d

dn

"

�(n+ 1=2)

�(1� n)((�1)

n

)

2

(n!)

2

 

�

s

1

4�

2

!

�n�

1

2

#

= i

s

4�

2

s

1

"

(�1)

n

�(n+

1

2

)

�(1� n)(�(n+ 1))

2

# 

 (1� n) + 2 (n+ 1)�  (n+ 1=2) � log

�

4�

2

s

1

�

!

�

4�

2

s

1

�

n

:

Making use of this residue formula, we 
an �nd

2

F

1

(1=2; 1=2; 3=2; 4�

2

=s

1

) as follows,

2

F

1

�

1

2

;

1

2

;

3

2

;

4�

2

s

1

�

=

i

2

p

�

s

4�

2

s

1

1

X

n=0

"

(�1)

n

�(n+ 1=2)

�(1� n)(�(n+ 1))

2

#

�

 

 (1� n) + 2 (n+ 1)�  (n+ 1=2)� log

�

4�

2

s

1

�

!

�

4�

2

s

1

�

n

= F

A

�

4�

2

s

1

�

; (20)

where  (z) =

d

dz

log �(z) =

�

0

(z)

�(z)

is 
alled Psi fun
tion.

Finally we 
an gain the following �nal result

J

3

(1; 1; 1;�) = �

i�

2

2�

2

"

F

A

 

4�

2

s

1

!#

2

: (21)

We understand that Eq. (21) is e�e
tive in the region s

1

> 4�

2

. A
tually we 
ould obtain the

solution e�e
tive in the region s

1

> 4�

2

by 
arrying out 
ontour integral in Mellin Barnes integral

representation of

2

F

1

(1=2; 1=2; 3=2; s

1

=4�

2

) on the left half 
omplex plane. Be
ause �(1� n) tends

to 1 ex
ept n = 0 and so the �rst term only (n = 0 term) survives in Eq. (21), the equation (21)

be
omes as follows, J

3

(1; 1; 1;�) =

i�

2

8�

2

�

4�

2

s

1

��

2
 � 2 log 2 + log(

4�

2

s

1

)

�

2

, where 
 is Euler's 
onstant

and we used  (1) = �
,  (1=2) = � log 4� 
.[10℄

We try to integrate Eq. (8) dire
tly by using 
ontour integral on the left half plane. At this time
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onsidering the mass shell 
ondition of �nal photons p

2

1

= p

2

2

= 0, it is better for integrating on

the right half plane with variables s; and; t, and after that, integrating on the left half plane with

variable u.

From Eq. (8) we have again, putting ! = 2, the following formula

J

3

(1; 1; 1;�) = �

2

(��

2

)

�1

i

(2�i)

3

Z

i1

�i1

Z

i1

�i1

Z

i1

�i1

ds dt du (22)
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�(3 + 2s+ 2t+ 2u)

�

�

�

p
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1

�

2

�

s

�

�

p

2

2

�

2

�

t

�

�

s

1

�

2

�

u

:

Integrating with respe
t to variables s; t, we have

J

3
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��

2

�

2

i
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�i1
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1

X
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1
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2
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�
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1
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2
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1
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2
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1
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2
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j

1
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j

2

j

1

!j

2

!�(3 + 2j

1

+ 2j

2

+ 2u)

�

�

�

p

2

1

�

2

�

j

1

�

�

p

2

2

�

2

�

j

2

�

�

s

1

�

2

�

u

:

Be
ause we have the relation

�(1 + u) =

�(1 + u+ j + 1)

(1 + u+ j)(1 + u+ j � 1)� � �� � �(1 + u)

; (24)

Eq. (23) has the triple poles as j

1

= j

2

= 0.

Carrying out the residue 
al
ulation, we obtain as follows,

J

3

(1; 1; 1; �) = �

�

2

�

2

1

2!

 

d

2

du

2

h

(u+ j

3

+ 1)

3

Integrand

i

!

u=�j

3

�1

: (25)

We get the following �nal result

J

3

(1; 1; 1; �) = �

�

2

�

2

1

2!

"

d

2

dj

2

3

(�1)

j

3

(j

3

!)

3

�(1� 2j

3

)

�

�

s

1

�

2

�

�j

3

�1

#

: (26)

It is tedious a bit to evaluate Eq. (26) in detail.

4 The analyti
 
ontinuation method

Hyper geometri
 fun
tion

2

F

1

(a; b; 
; z) de�ned by

2

F

1

(a; b; 
; z) =

1

X

n=0

(a)

n

(b)

n

n!(
)

n

z

n

(27)


onverges on the 
ondition of jzj < 1. Now we 
onsider the analyti
 
ontinuation of

2

F

1

(a; b; 
; z) to

the region j

1

z

j < 1. By taking su
h a situation we 
an make the formula whi
h holds in the region

s

1

> 4�

2

.

The analyti
 
ontinuation formula of

2

F

1

(a; b; 
; z) is expressed as follows,[10℄

2

F

1

(a; b; 
; z) =

�(
)�(b� a)

�(b)�(
� a)

(�z)

�a

2

F

1

(a; a� 
+ 1; a� b+ 1 : 1=z)

+

�(
)�(a� b)

�(a)�(
� b)

(�z)

�b

2

F

1

(b; b� 
+ 1; b � a+ 1 : 1=z): (28)

6



Applying this formula to

2

F

1

(1=2; 1=2; 3=2; z) ,be
ause of �(a� b) = �(b� a) = �(0) =1 we 
an't

obtain the meaningful formula by analyti
 
ontinuation of

2

F

1

(1=2; 1=2; 3=2; z). To get rid of this

diÆ
ulty we introdu
e an idea of double limit pro
edure as follows,

2

F

1

�

1

2

;

1

2

;

3

2

; z

�

= lim

�!0

2

F

1

�

1

2

+ �;

1

2

� �;

3

2

; z

�

: (29)

By using this pro
edure,

2

F

1

(1=2; 1=2; 3=2; z) be
omes as follows,

2

F

1

�

1

2

;

1

2

;

3

2

; z

�

= lim

�!0

"

2

F

1

�

1

2

+ �;

1

2

� �;

3

2

; z

�

#

= lim

�!0

"

�(

3

2

)�(�2")

�(

1

2

� ")�(1� �)

�

�

1

z

�

1

2

+"

(30)

�

2

F

1

(

1

2

+ �; �; 1 + 2� : 1=z)+

�(

3

2

)�(2�)

�(

1

2

+ �)�(1 + �)

�

�

1

z

�

1

2

��

2

F

1

(

1

2

� �;��; 1� 2� : 1=z)

#

Furthermore we utilize the following formulas[11℄

�(�2�) =

1

�2�

� 
 + (


2

+ �

2

=6)(��) +O(�

2

) and �(2�) =

1

2�

� 
 + (


2

+ �

2

=6)�+O(�

2

) (31)

lim

�!0

2

F

1

�

1

2

+ �; �; 1 + 2�;

1

z

�

=

2

F

1

�

1

2

; 0; 1 :

1

z

�

= 1; (32)

lim

�!0

2

F

1

�

1

2

� �;��; 1� 2�;

1

z

�

=

2

F

1

�

1

2

; 0; 1 :

1

z

�

= 1; (33)

�

�

1

z

�

1

2

+�

= i

�

1

z

�

1

2

�

�

1

z

�

�

=

i(�1)

�

p

z

exp(� log

1

z

)=

i(�1)

�

p

z

h

1+( log

1

z

)�+O(�

2

)

i

; (34)

and similarly

�

�

1

z

�

1

2

��

=

i(�1)

�

p

z

h

1�( log

1

z

)�+O(�

2

)

i

: (35)

Substituting Eqs. (31)(32)(33)(34)(35) to Eq. (30) yields a meaningful formula analyti
ally 
on-

tinued from the region jzj < 1 to the region jzj > 1.

That is,

2

F

1

�

1

2

;

1

2

;

3

2

; z

�

= lim

�!0

2

F

1

�

1

2

+ �;

1

2

� �;

3

2

; z

�

= lim

�!0

h

�(3=2)�(�2�)

�(1=2 � �)�(1� �)

�

�

1

z

�

1

2

+�

2

F

1

�

1

2

+ �; �; 1 + 2�;

1

z

�

+

�(3=2)�(2�)

�(1=2 + �)�(1 + �)

�

�

1

z

�

1

2

��

2

F

1

�

1

2

� �;��; 1� 2�;

1

z

�ii

(36)

=

�(3=2)

�(1=2)�(1)

2

F

1

(

1

2

; 0; 1;

1

z

)lim

�!0

h

�(�2�)

�

�

1

z

�

1

2

+�

+�(2�)

�

�

1

z

�

1

2

��

i

Furthermore we 
an show that the divergent terms 
an
el ea
h other by exploiting the double limit

pro
edure as follows,

2

F

1

(

1

2

;

1

2

;

3

2

; z)=

1

2

lim

�!0

h�

1

�2�

� 
 + (


2

+ �

2

=6)(��) +O(�

2

)

�

i(�1)

�

p

z

�

1 + (log(1=z))� +O(�

2

)

�

+

�

1

2�

� 
 + (


2

+ �

2

=6)(�) +O(�

2

)

�

i(�1)

�

p

z

�

1� (log(1=z))� +O(�

2

)

�i

=

i

2

p

z

lim

�!0

h

�

1

2�

�

1

2

log(

1

z

)� 
 +O(�) +

1

2�

�

1

2

log(

1

z

)� 
 +O(�)

i

= �

i

2

p

z

h

2
 + log

�

1

z

�i

: (37)
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Be
ause

3

F

2

(1; 1; 1;

1

2

;

3

2

)=

h

2

F

1

(1=2; 1=2; 3=2)

i

2

= �

1

4z

�

2
 + log

1

z

�

2

; (38)

we have

J

3

(1; 1; 1;�) = �

i�

2

2�

2

h

�

1

4z

�

2
 + log

1

z

�

2

i

=

i�

2

8�

2

1

z

�

2
 + log

1

z

�

2

: (39)

Putting z = s

1

=4�

2

, we obtain the formula e�e
tive in the region s

1

> 4� as follows,

J

3

(1; 1; 1; �) =

i�

2

8�

2

�

4�

2

s

1

��

2
 + log

�

4�

2

s

1

��

2

: (40)

Comparing Eq. (40) to Eq. (21), we know that Eq. (40) is 
onsistent with the Eq. (21) apart from

an additional 
onstant �2 log 2 .

Now let us prove the following formula that we used when deriving Eq. (39) in the two ways,

2

F

1

�

1

2

; 0; 1; z

�

=

2

F

1

�

0;

1

2

; 1; z

�

= 1: (41)

Euler's integral representation of Hyper geometri
 fun
tion

2

F

1

(a; b; 
; z) is expressed as follows,

2

F

1

(a; b; 
; z)=

�(
)

�(b)�(
� b)

Z

1

0

t

b�1

(1� t)


�b�1

(1� tz)

�a

dt: (42)

(i) The way that we integrate Eq. (41) immediately ;

2

F

1

�

0;

1

2

; 1; z

�

=

�(1)

�(

1

2

)�(

1

2

)

Z

1

0

t

�

1

2

(1 � t)

�

1

2

dt

=

1

p

�

p

�

Z

1

0

t

�

1

2

(1� t)

�

1

2

dt =

1

�

Z

1

0

dt

p

t� t

2

=

1

�

h

� ar
sin(�2z + 1)

i

1

0

(43)

=

1

�

�

� ar
sin(�1) + ar
sin(1)

�

=

1

�

�

�(�

�

2

)+

�

2

�

=

1

�

� � = 1

(ii) the way that we use the de�nition of beta fun
tion ;

2

F

1

(0; b; 
; z) =

�(
)

�(b)�(
� b)

Z

1

0

t

b�1

(1� t)


�b�1

dt

=

�(
)

�(b)�(
� b)

B(b; 
� b) =

�(
)

�(b)�(
� b)

�

�(b)�(
 � b)

�(
)

= 1 (44)

Therefore we 
an show that

2

F

1

(1=2; 0; 1; z) = 1 holds.

5 Con
luding Remarks

In this paper we reviewed the 
al
ulation

method of Feynman propagator whi
h appears

when we 
al
ulate the de
ay width of de
ay pro-


essK

0

S

!2
, and dis
overed by Davydy
hev and

others. The result of the 
al
ulation was e�e
-

tive on the 
ondition s

1

< 4�

2

. But in this


ase we must have the formula whi
h holds on

the 
ondition s

1

> 4�

2

. In this paper we pro-

posed two ways of the 
al
ulation by whi
h we


an obtain the result e�e
tive on the 
ondition

s

1

> 4�

2

. The �rst way was the method of the


al
ulation that we employ 
ontour integral on

the left half 
omplex plane, di�erent from the


ontour integral in the previous paper. At that

time it is known that the double poles appear in

the integrand. By using this method of 
al
ula-

tion we 
ould gain the formula e�e
tive in the

region s

1

> 4�

2

. But it was that we integrated

the formula of Mellin Barnes representation of

2

F

1

(a; b; 
; z) on the 
ontour of the left half 
om-

8



plex plane. I think that we have to perform the

triple integral of Eq. (8) on the 
ontour of the

left half 
omplex plane dire
tly. In this situation

three 
ases are 
onsidered when we do the 
on-

tour integrals of Eq. (8), that is, (i) on the right

half plane with respe
t to variables s; t and on

the left half plane with variable u. (ii) on the

right half plane with one of variables s; t; u and

on the left half plane with remaining two vari-

ables. (iii) on the left half plane with respe
t

to variables s; t; u all. In the 
ases of (ii) and

(iii) the 
al
ulations may 
ause a few problems

as 
onvergen
e, integrability, and so on. The se
-

ond way of the 
al
ulation was the method that

we use analyti
 
ontinuation of Hyper geomet-

ri
 fun
tion. In this 
ase we had to 
arry out

the analyti
 
ontinuation from the region jzj < 1

to the region j

1

z

j < 1. We 
ould not get the

meaningful formula be
ause �(0) =1 appeared

in the formula. Therefore we proposed double

limit pro
edure te
hnique. We 
ould obtain the

meaningful result by using this te
hnique. But

this result is not 
onsistent with the one of se
-

tion 3 by the 
ontour integral on the left half

plane 
ompletely. We may be able to understand

why the di�eren
e between both results by two

methods yields by 
onsidering other 
ontour of

the integration, for example, as Po
hhammer's


ontour.

||||||||||||||||||||||||||||||||||||||||||

{

|||||||||||||||||||||||||{

Referen
es

[1℄A.Sato : Nuovo Cimento Vol. 118 B, N.3 (2002) 233-242 .

[2℄ Atsushi Sato : Nuovo Cimento Vol. 119 B, N.11(2004) 1067-1084 .

[3℄ Atsushi Sato : Resear
h Reports Kushiro National College of Te
hnology, No. 47 (2013), p47-56.

[4℄ Atsushi Sato : Resear
h Reports Kushiro National College of Te
hnology, No. 48 (2014), p57-66.

[5℄ Generalized Hypergeometri
 Fun
tions, Lu
y Joan Slater, Cambridge University Press .

[6℄ Hypergeometri
 Fun
tions and Their Appli
ations, James B. Seaborn, Springer-Verlag .

[7℄ Spe
ial Fun
tions, Z.X.Wong and D.R.Guo, World S
ienti�
 .

[8℄ E.E.Boos and A.I.Davydy
hev : Nu
l.Phys,B89(1991),1052-1064 .

[9℄ A.I.Davydy
hev : J.Math.Phys.32(1991)1052-1060 .

[10℄ S.Morigu
hi, K.Udagawa, S.Hitotumatu, (eds) : Sugaku Koshiki III , Iwanami Shoten .

[11℄ Modern Physi
s Series (23) Quantum Theory of Gauge Fields . T. Kugo, Baifukan .

9


