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Abstrat

In the previous paper we showed that Davydyhev method is useful when we alulate our

Feynman integrals. The results of the alulation are valid in the domains

1

=4�

2

< 1 . In this

paper we try to do analyti ontinuation to the domain 4�

2

=s

1

< 1 . Furthermore we onsider

the way to alulate our Feynman integrals by taking the integral ontour of semiirle on the

left half plane. This alulation is omplex a bit beause there are many singularities.
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1 Introdution

In the previous papers we have showed the

new parameter transformation and the integral

tehniques of Feynman integrals.[3℄[4℄ This new

parameter transformation was what we solved

Shwinger parametrization equation in reverse

and generalized it.[1℄[2℄ Furthermore we showed

that the method to utilize Hyper geometri fun-

tion is useful on the oasion of alulation of

Feynman propagator. The advantages to make

use of Hyper geometri funtion are as follows,

(i) we an desribe the results of alulation by

means of the onvergent series, (ii) we an get

a few kind of integral representations of Hyper

geometri funtion easily, (iii) we an do the an-

alyti ontinuation of Hyper geometri funtion

from one domain to another domain of variable

easily.[5℄[6℄[7℄ As a result we an study the math-

ematial and physial features of the solutions in

the several regions. (iv) Hyper geometri fun-

tions inlude the important funtions whih ap-

pear in physis, for example, trigonometri fun-

tion, spherial funtion, and so on, as the sub

funtions. The diÆult points are (i) Sometimes

the alulations are so omplex rather than ones

by using the usual funtions. (ii) There are a lot

of undeveloped portions, espeially, in Kamp�e

de F�eriet funtion, Lauriella funtion, and so

on. But in these days from the alulations

of Feynman propagator the reurrene formulas

and the di�erential equations whih Hyper geo-

metri funtion obeys are being found. Last year

in the previous paper we alulated the Feynman

propagator in K

0

S

!2 proess by using Davydy-

hev method.[4℄ But we obtained the result that

beame e�etive on the ondition s

1

< 4�

2

, of

the so-alled heavy partiles ase. Namely it's

not e�etive in K

0

S

!2 proess. In this paper

we'd like to obtain the onsequenes and the way

of the alulation to lead the e�etive result for

light partiles. In setion.2 we review the Davy-

dyhev method in the previous paper.[4℄[8℄[9℄ In

setion.3 we alulate Feynman propagator by

using ontour integral on the left half omplex

plane. In setion.4 we alulate the same in-
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tegral by using analyti ontinuation and dou-

ble limit proedure of Hyper geometri funtion

2

F

1

(a; b; ; z). In setion.5 we disuss the result

and propose the further progress of the alula-

tion in this paper as onluding remarks.

2 The alulation of Feynman integral using Davydyhev method

At �rst we'd like to review the alulation method of Feynman propagators shown by Davydy-

hdev and others, and that l wrote in my paper last year.[4℄ When we alulate the deay width in

the deay proess K

0

S

!2, we have to evaluate the following integral �nally,

J

3

(1; 1; 1;�) =

Z

d

2!

q

[q

2

� �

2

+ i�℄[(q + p

1

)

2

� �

2

+ i�℄[(q � p

2

)

2

� �

2

+ i�℄

; (1)

where p

1

and p

2

are four momentum of emited �nal real photons respetively, and �

2

is pion

mass squared. In suh a proess the mass shell ondition p

2

1

= p

2

2

= 0 is satis�ed. Getting

rid of in�nitesimal quantity i�, we perform the alulation in pseudo Eulidean mometum spae.

Furthermore the dimensional parameter is ! = 2� �. Using Hyper geometri funtion

1

F

0

�

1;

�

2

q

2

�

,

we an express Eq. (1) as

J

3

(1; 1; 1;�) =

Z

1
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1
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�

2
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2

!

d
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q
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2
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℄

: (2)

On exploiting Mellin Barnes integral representation of hyper geometri funtion

1

F
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�

2

q

2

!

=

1

2�i

Z

i1

�i1

�(�v)�(1 + v)( � �

2

)

v

dv; (3)

Eq. (1) beomes
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where J

2

(1 + v; 1; 1; �) is

J

2

(1 + v; 1; 1 + �) =

Z

d

2!

q

(q

2

)[(q + p

1

)

2

� �

2

℄[(q � p

1

)

2

� �

2

℄

= �

!

i

1�2!

h

�(1 + v)

i

�1

1

(2�i)

3

Z

i1

�i1

Z

i1

�i1

Z

i1

�i1

ds dt du�(�s)�(�t)�(�u)

�

 

�

p

2

1

�

2

!

s

 

�

p

2

2

�

2

!

t

 

�

s

1

�

2

!

u

�(v + 3� ! + s+ t+ u)�(1 + v + s+ t)

�(! + s+ t+ u)

�

�(1 + s+ u)�(1 + t+ u)�(! � 1� v + u)

�(2 + s+ t+ 2u)

: (5)

Substituting Eq. (5) in Eq. (4) yields
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In this stage, utilizing Barnes formula onerning � funtion[10℄

1

2�i

Z

i1

�i1

ds�(a+ s)�(b+ s)�(� s)�(d� s) =

�(a+ )�(a+ d)�(b+ )�(b+ d)

�(a+ b+ + d)

; (7)

and further performing the integration onerning variable v, we an obtain a beautiful formula

symmetrial to variables s; t; u;
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�

�(1 + s+ u)�(1 + t+ u)�(1 + s+ t)�(3� ! + s+ t+ u)

�(3 + 2s+ 2t+ 2u)

;

where s

1

= (p

1

� p

2

)

2

is kaon mass squared of input partile.

Now we arry out the residue alulations onerning variables s; t; u synhronously, taking the

integral ontours on the right half omplex planes. In these planes �(�s);�(�t);�(�u) only have

single poles on the right half omplex planes.

The result of the residue alulation beomes
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Beause we treat emitted real photons, we have p

2

1

= p

2

2

= 0 from the mass shell ondition. So

only the j

1

= 0; j

2

= 0 terms survive in Eq.(9). Now we an take ! = 2. This means the analyti

ontinuation from 2! dimension to four dimension. Therefore we have
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And on using Hyper geometri funtion, we have
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Adopting Claussen's formula[10℄

3

F

2

 

1; 1; 1;

3

2
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s

1
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2

!

=

"

2

F
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1

2
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1

2
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3

2
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s

1

4�

2
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2

; (12)

and

arsin

r

s

1

4�

2

=

r

s

1

4�

2

2

F

1

 

1

2

;

1

2

;

3

2

;

s

1

4�

2

!

; (13)

we an obtain the following �nal result

J

3

(1; 1; 1;�) = �i
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2

s
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r

s

1

4�

2

!

2

: (14)
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This equation is e�etive on the ondition s

1

< 4�

2

. In this ase beause of s

1

= 0:248GeV(Kaon

mass squared) and �

2

= 0:0195GeV(Pion mass squared) the ondition is not satis�ed. Therefore

we need to �nd out a good way to handle suh a situation. In the following setions we'd like to

show the good ways by taking the other integral ontour or doing the analyti ontinuation to the

region s

1

> 4�

2

when we evaluate Eq. (8).

3 The alulation by using ontour integral on the left half om-

plex plane

As we reviewed in the previous setion , the result of the alulation was e�etive on the on-

dition s

1

< 4�

2

. But at the alulation in phenomenon K

S

0

!2 we have to obtain the result

of the alulation whih is e�etive in the region s

1

> 4�

2

. To get suh a e�etive result, we

must extend the integral domain to the left half omplex plane in this ase of the alulation of

2

F

1

(1=2; 1=2; 3=2; s

1

=4�

2

). By doing that, we an gain the formula e�etive in the region s

1

> 4�

2

.

First of all Mellin Barnes integral representation of hyper geometri funtion

2

F

1

(a; b; ; z) is ex-

pressed as follows,

2

F

1

(a; b; ; z) =

�(a)�(b)
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1

2�i

Z
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�i1
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�(+ s)

(�z)

s

ds: (15)

Applying this formula to hyper geometri funtion

2

F

1

(1=2; 1=2; 3=2; s

1

=4�

2

), we have the following

formula

2
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1

2

;

3
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s
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�

=
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�(1=2)�(1=2)

1

2�i

Z

i1

�i1

�

�

1

2

+ t

�

�

�

1

2

+ t

�

�(�t)
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=

1
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�

s

1
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2

!

t

dt: (16)

Of ourse, doing ontour integral on the right half omplex plane returns Eq. (16) to the original

hyper geometri funtion

2

F

1

(1=2; 1=2; 3=2; s

1

; 4�

2

) again beause of the ontribution of the poles

from �(�t) only. This situation is the same as the onsideration of setion 2 entirely.

Now we perform ontour integral on the left half omplex plane as drawing the ontour in Fig.1,

and we show that we an derive the formula e�etive in the region s

1

> 4�

2

by doing suh a ontour

integration. The positions of poles in the integrand are shown in Fig.1. It is understood from the

following formula

�

�

1

2

+ t

�

=

�

�

1

2

+ t+ n+ 1

�

�

1

2

+ t+ n
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1
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+ t+ n� 1

�

� � � � � �

�

1

2

+ t

�

; (17)

that the integrand has double poles , substituting Eq. (17) to Eq. (16), that is,
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�
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=
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Re(t)

iIm(t)
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� n

R

Fig.1

�i1

i1

The residue of integral onerning the double poles is alulated as follows,
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1

2

; Integrand
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s
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"
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�

!

�
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2

s

1

�

n

:

Making use of this residue formula, we an �nd

2

F

1

(1=2; 1=2; 3=2; 4�

2

=s

1

) as follows,

2
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1
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�
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n
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�
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�
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�
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where  (z) =

d

dz

log �(z) =

�

0

(z)

�(z)

is alled Psi funtion.

Finally we an gain the following �nal result

J
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(1; 1; 1;�) = �
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We understand that Eq. (21) is e�etive in the region s

1

> 4�

2

. Atually we ould obtain the

solution e�etive in the region s

1

> 4�

2

by arrying out ontour integral in Mellin Barnes integral

representation of

2

F

1

(1=2; 1=2; 3=2; s

1

=4�

2

) on the left half omplex plane. Beause �(1� n) tends

to 1 exept n = 0 and so the �rst term only (n = 0 term) survives in Eq. (21), the equation (21)

beomes as follows, J

3

(1; 1; 1;�) =

i�

2

8�

2

�

4�

2

s

1
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2 � 2 log 2 + log(

4�

2

s

1

)

�

2

, where  is Euler's onstant

and we used  (1) = �,  (1=2) = � log 4� .[10℄

We try to integrate Eq. (8) diretly by using ontour integral on the left half plane. At this time
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onsidering the mass shell ondition of �nal photons p

2

1

= p

2

2

= 0, it is better for integrating on

the right half plane with variables s; and; t, and after that, integrating on the left half plane with

variable u.

From Eq. (8) we have again, putting ! = 2, the following formula
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Integrating with respet to variables s; t, we have
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Beause we have the relation

�(1 + u) =

�(1 + u+ j + 1)

(1 + u+ j)(1 + u+ j � 1)� � �� � �(1 + u)

; (24)

Eq. (23) has the triple poles as j

1

= j

2

= 0.

Carrying out the residue alulation, we obtain as follows,
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We get the following �nal result
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It is tedious a bit to evaluate Eq. (26) in detail.

4 The analyti ontinuation method

Hyper geometri funtion
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1

X

n=0

(a)

n

(b)

n

n!()

n

z

n

(27)

onverges on the ondition of jzj < 1. Now we onsider the analyti ontinuation of

2

F

1

(a; b; ; z) to

the region j

1

z

j < 1. By taking suh a situation we an make the formula whih holds in the region

s

1

> 4�

2

.

The analyti ontinuation formula of

2

F

1

(a; b; ; z) is expressed as follows,[10℄

2

F

1

(a; b; ; z) =

�()�(b� a)

�(b)�(� a)

(�z)

�a

2

F

1

(a; a� + 1; a� b+ 1 : 1=z)

+

�()�(a� b)

�(a)�(� b)

(�z)

�b

2

F

1

(b; b� + 1; b � a+ 1 : 1=z): (28)

6



Applying this formula to

2

F

1

(1=2; 1=2; 3=2; z) ,beause of �(a� b) = �(b� a) = �(0) =1 we an't

obtain the meaningful formula by analyti ontinuation of

2

F

1

(1=2; 1=2; 3=2; z). To get rid of this

diÆulty we introdue an idea of double limit proedure as follows,

2

F

1

�

1

2

;

1

2

;

3

2

; z

�

= lim

�!0

2

F

1

�

1

2

+ �;

1

2

� �;

3

2

; z

�

: (29)

By using this proedure,

2

F

1

(1=2; 1=2; 3=2; z) beomes as follows,

2

F

1

�

1

2

;

1

2

;

3

2

; z

�

= lim

�!0

"

2

F

1

�

1

2

+ �;

1

2

� �;

3

2

; z

�

#

= lim

�!0

"

�(

3

2

)�(�2")

�(

1

2

� ")�(1� �)

�

�

1

z

�

1

2

+"

(30)

�

2

F

1

(

1

2

+ �; �; 1 + 2� : 1=z)+

�(

3

2

)�(2�)

�(

1

2

+ �)�(1 + �)

�

�

1

z

�

1

2

��

2

F

1

(

1

2

� �;��; 1� 2� : 1=z)

#

Furthermore we utilize the following formulas[11℄

�(�2�) =

1

�2�

�  + (

2

+ �

2

=6)(��) +O(�

2

) and �(2�) =

1

2�

�  + (

2

+ �

2

=6)�+O(�

2

) (31)

lim

�!0

2

F

1

�

1

2

+ �; �; 1 + 2�;

1

z

�

=

2

F

1

�

1

2

; 0; 1 :

1

z

�

= 1; (32)

lim

�!0

2

F

1

�

1

2

� �;��; 1� 2�;

1

z

�

=

2

F

1

�

1

2

; 0; 1 :

1

z

�

= 1; (33)

�

�

1

z

�

1

2

+�

= i

�

1

z

�

1

2

�

�

1

z

�

�

=

i(�1)

�

p

z

exp(� log

1

z

)=

i(�1)

�

p

z

h

1+( log

1

z

)�+O(�

2

)

i

; (34)

and similarly

�

�

1

z

�

1

2

��

=

i(�1)

�

p

z

h

1�( log

1

z

)�+O(�

2

)

i

: (35)

Substituting Eqs. (31)(32)(33)(34)(35) to Eq. (30) yields a meaningful formula analytially on-

tinued from the region jzj < 1 to the region jzj > 1.

That is,

2

F

1

�

1

2

;

1

2

;

3

2

; z

�

= lim

�!0

2

F

1

�

1

2

+ �;

1

2

� �;

3

2

; z

�

= lim

�!0

h

�(3=2)�(�2�)

�(1=2 � �)�(1� �)

�

�

1

z

�

1

2

+�

2

F

1

�

1

2

+ �; �; 1 + 2�;

1

z

�

+

�(3=2)�(2�)

�(1=2 + �)�(1 + �)

�

�

1

z

�

1

2

��

2

F

1

�

1

2

� �;��; 1� 2�;

1

z

�ii

(36)

=

�(3=2)

�(1=2)�(1)

2

F

1

(

1

2

; 0; 1;

1

z

)lim

�!0

h

�(�2�)

�

�

1

z

�

1

2

+�

+�(2�)

�

�

1

z

�

1

2

��

i

Furthermore we an show that the divergent terms anel eah other by exploiting the double limit

proedure as follows,

2

F

1

(

1

2

;

1

2

;

3

2

; z)=

1

2

lim

�!0

h�

1

�2�

�  + (

2

+ �

2

=6)(��) +O(�

2

)

�

i(�1)

�

p

z

�

1 + (log(1=z))� +O(�

2

)

�

+

�

1

2�

�  + (

2

+ �

2

=6)(�) +O(�

2

)

�

i(�1)

�

p

z

�

1� (log(1=z))� +O(�

2

)

�i

=

i

2

p

z

lim

�!0

h

�

1

2�

�

1

2

log(

1

z

)�  +O(�) +

1

2�

�

1

2

log(

1

z

)�  +O(�)

i

= �

i

2

p

z

h

2 + log

�

1

z

�i

: (37)
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Beause

3

F

2

(1; 1; 1;

1

2

;

3

2

)=

h

2

F

1

(1=2; 1=2; 3=2)

i

2

= �

1

4z

�

2 + log

1

z

�

2

; (38)

we have

J

3

(1; 1; 1;�) = �

i�

2

2�

2

h

�

1

4z

�

2 + log

1

z

�

2

i

=

i�

2

8�

2

1

z

�

2 + log

1

z

�

2

: (39)

Putting z = s

1

=4�

2

, we obtain the formula e�etive in the region s

1

> 4� as follows,

J

3

(1; 1; 1; �) =

i�

2

8�

2

�

4�

2

s

1

��

2 + log

�

4�

2

s

1

��

2

: (40)

Comparing Eq. (40) to Eq. (21), we know that Eq. (40) is onsistent with the Eq. (21) apart from

an additional onstant �2 log 2 .

Now let us prove the following formula that we used when deriving Eq. (39) in the two ways,

2

F

1

�

1

2

; 0; 1; z

�

=

2

F

1

�

0;

1

2

; 1; z

�

= 1: (41)

Euler's integral representation of Hyper geometri funtion

2

F

1

(a; b; ; z) is expressed as follows,

2

F

1

(a; b; ; z)=

�()

�(b)�(� b)

Z

1

0

t

b�1

(1� t)

�b�1

(1� tz)

�a

dt: (42)

(i) The way that we integrate Eq. (41) immediately ;

2

F

1

�

0;

1

2

; 1; z

�

=

�(1)

�(

1

2

)�(

1

2

)

Z

1

0

t

�

1

2

(1 � t)

�

1

2

dt

=

1

p

�

p

�

Z

1

0

t

�

1

2

(1� t)

�

1

2

dt =

1

�

Z

1

0

dt

p

t� t

2

=

1

�

h

� arsin(�2z + 1)

i

1

0

(43)

=

1

�

�

� arsin(�1) + arsin(1)

�

=

1

�

�

�(�

�

2

)+

�

2

�

=

1

�

� � = 1

(ii) the way that we use the de�nition of beta funtion ;

2

F

1

(0; b; ; z) =

�()

�(b)�(� b)

Z

1

0

t

b�1

(1� t)

�b�1

dt

=

�()

�(b)�(� b)

B(b; � b) =

�()

�(b)�(� b)

�

�(b)�( � b)

�()

= 1 (44)

Therefore we an show that

2

F

1

(1=2; 0; 1; z) = 1 holds.

5 Conluding Remarks

In this paper we reviewed the alulation

method of Feynman propagator whih appears

when we alulate the deay width of deay pro-

essK

0

S

!2, and disovered by Davydyhev and

others. The result of the alulation was e�e-

tive on the ondition s

1

< 4�

2

. But in this

ase we must have the formula whih holds on

the ondition s

1

> 4�

2

. In this paper we pro-

posed two ways of the alulation by whih we

an obtain the result e�etive on the ondition

s

1

> 4�

2

. The �rst way was the method of the

alulation that we employ ontour integral on

the left half omplex plane, di�erent from the

ontour integral in the previous paper. At that

time it is known that the double poles appear in

the integrand. By using this method of alula-

tion we ould gain the formula e�etive in the

region s

1

> 4�

2

. But it was that we integrated

the formula of Mellin Barnes representation of

2

F

1

(a; b; ; z) on the ontour of the left half om-

8



plex plane. I think that we have to perform the

triple integral of Eq. (8) on the ontour of the

left half omplex plane diretly. In this situation

three ases are onsidered when we do the on-

tour integrals of Eq. (8), that is, (i) on the right

half plane with respet to variables s; t and on

the left half plane with variable u. (ii) on the

right half plane with one of variables s; t; u and

on the left half plane with remaining two vari-

ables. (iii) on the left half plane with respet

to variables s; t; u all. In the ases of (ii) and

(iii) the alulations may ause a few problems

as onvergene, integrability, and so on. The se-

ond way of the alulation was the method that

we use analyti ontinuation of Hyper geomet-

ri funtion. In this ase we had to arry out

the analyti ontinuation from the region jzj < 1

to the region j

1

z

j < 1. We ould not get the

meaningful formula beause �(0) =1 appeared

in the formula. Therefore we proposed double

limit proedure tehnique. We ould obtain the

meaningful result by using this tehnique. But

this result is not onsistent with the one of se-

tion 3 by the ontour integral on the left half

plane ompletely. We may be able to understand

why the di�erene between both results by two

methods yields by onsidering other ontour of

the integration, for example, as Pohhammer's

ontour.
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