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Abstract

In the previous paper we showed that Davydychev method is useful when we calculate our
Feynman integrals. The results of the calculation are valid in the domains; /4> < 1 . In this
paper we try to do analytic continuation to the domain 4u?/s; < 1 . Furthermore we consider
the way to calculate our Feynman integrals by taking the integral contour of semicircle on the
left half plane. This calculation is complex a bit because there are many singularities.
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1 Introduction

In the previous papers we have showed the
new parameter transformation and the integral
techniques of Feynman integrals.[3][4] This new
parameter transformation was what we solved
Schwinger parametrization equation in reverse
and generalized it.[1][2] Furthermore we showed
that the method to utilize Hyper geometric func-
tion is useful on the occasion of calculation of
Feynman propagator. The advantages to make
use of Hyper geometric function are as follows,
(i) we can describe the results of calculation by
means of the convergent series, (ii) we can get
a few kind of integral representations of Hyper
geometric function easily, (iii) we can do the an-
alytic continuation of Hyper geometric function
from one domain to another domain of variable
easily.[5][6][7] As a result we can study the math-
ematical and physical features of the solutions in
the several regions. (iv) Hyper geometric func-
tions include the important functions which ap-
pear in physics, for example, trigonometric func-

Feynman integrals, quantum chromodynamics, hyper-geometric function

tion, spherical function, and so on, as the sub
functions. The difficult points are (i) Sometimes
the calculations are so complex rather than ones
by using the usual functions. (ii) There are a lot
of undeveloped portions, especially, in Kampe
de Feériet function, Lauricella function, and so
on. But in these days from the calculations
of Feynman propagator the recurrence formulas
and the differential equations which Hyper geo-
metric function obeys are being found. Last year
in the previous paper we calculated the Feynman
propagator in K g—>27 process by using Davydy-
chev method.[4] But we obtained the result that
became effective on the condition s; < 42, of
the so-called heavy particles case. Namely it’s
not effective in Kg—>27 process. In this paper
we’d like to obtain the consequences and the way
of the calculation to lead the effective result for
light particles. In section.2 we review the Davy-
dychev method in the previous paper.[4][8][9] In
section.3 we calculate Feynman propagator by
using contour integral on the left half complex
plane. In section.4 we calculate the same in-
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tegral by using analytic continuation and dou- oF}(a,b;c;z). In section.5 we discuss the result
ble limit procedure of Hyper geometric function and propose the further progress of the calcula-
tion in this paper as concluding remarks.

2 The calculation of Feynman integral using Davydychev method

At first we’d like to review the calculation method of Feynman propagators shown by Davydy-
chdev and others, and that 1 wrote in my paper last year.[4] When we calculate the decay width in
the decay process Kg—>27, we have to evaluate the following integral finally,
/ d2w q (1)

[ — p? +ie]l(q + p1)? — p? +iell(q — p2)? — p? +ie]’
where p; and po are four momentum of emited final real photons respectively, and p? is pion

mass squared. In such a process the mass shell condition p? = p2 = 0 is satisfied. Getting
rid of infinitesimal quantity ie, we perform the calculation in pseudo Euclidean mometum space.
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Furthermore the dimensional parameter is w = 2 — €. Using Hyper geometric function 1 Fj (1, /g—j),

we can express Eq. (1) as
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On exploiting Mellin Barnes integral representation of hyper geometric function
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Eq. (1) becomes
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Substituting Eq. (5) in Eq. (4) yields
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In this stage, utilizing Barnes formula concerning I" function[10]

L/i“’ dsT(a + $)0(b+ $)0(c — s)T(d — 5) — L@ T TTbF LD + d)

7
271 J —ioo F(a+b+c+d) ’ ™

and further performing the integration concerning variable v, we can obtain a beautiful formula
symmetrical to variables s, ¢, u,

T, 1,10 = m9il2(—p 2m/ / / ds dt duT (—s)T'(—)T(—u)
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where s; = (p; — p2)? is kaon mass squared of input particle.

Now we carry out the residue calculations concerning variables s,t,u synchronously, taking the
integral contours on the right half complex planes. In these planes I'(—s),I'(—¢),I'(—u) only have
single poles on the right half complex planes.

The result of the residue calculation becomes

oo oo o0
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Because we treat emitted real photons, we have p? = p3 = 0 from the mass shell condition. So

only the j; = 0,72 = 0 terms survive in Eq.(9). Now we can take w = 2. This means the analytic
continuation from 2w dimension to four dimension. Therefore we have
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And on using Hyper geometric function, we have
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Adopting Claussen’s formula[10]
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we can obtain the following final result

and
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This equation is effective on the condition s; < 4u?. In this case because of s; = 0.248GeV (Kaon
mass squared) and p? = 0.0195GeV (Pion mass squared) the condition is not satisfied. Therefore
we need to find out a good way to handle such a situation. In the following sections we’d like to
show the good ways by taking the other integral contour or doing the analytic continuation to the
region s; > 442 when we evaluate Eq. (8).

3 The calculation by using contour integral on the left half com-
plex plane

As we reviewed in the previous section , the result of the calculation was effective on the con-
dition s; < 4pu?. But at the calculation in phenomenon Kj—2y we have to obtain the result
of the calculation which is effective in the region s; > 4u?. To get such a effective result, we
must extend the integral domain to the left half complex plane in this case of the calculation of
o F1(1/2,1/2;3/2; 51 /4u?). By doing that, we can gain the formula effective in the region s1 > 4.
First of all Mellin Barnes integral representation of hyper geometric function 9F} (a,b;c; z) is ex-
pressed as follows,

o Fi(a,b;c;2) =
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Applying this formula to hyper geometric function oy (1/2,1/2; 3/2; s1 /41?), we have the following
formula
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Of course, doing contour integral on the right half complex plane returns Eq. (16) to the original
hyper geometric function oFy(1/2,1/2;3/2;51;4u2) again because of the contribution of the poles
from I'(—%) only. This situation is the same as the consideration of section 2 entirely.
Now we perform contour integral on the left half complex plane as drawing the contour in Fig.1,
and we show that we can derive the formula effective in the region s; > 442 by doing such a contour
integration. The positions of poles in the integrand are shown in Fig.1. It is understood from the
following formula

r(3+t+n+1)
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that the integrand has double poles , substituting Eq. (17) to Eq. (16), that is,
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Fig.1

The residue of integral concerning the double poles is calculated as follows,
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Making use of this residue formula, we can find o F;(1/2,1/2;3/2;4u2 /s1) as follows,
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where 1(z) = L1ogT(2) = 11:,((;) is called Psi function.
Finally we can gain the following final result
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We understand that Eq. (21) is effective in the region s; > 4u?. Actually we could obtain the
solution effective in the region s; > 4u? by carrying out contour integral in Mellin Barnes integral
representation of o Fy (1/2,1/2;3/2; 51 /4u?) on the left half complex plane. Because T'(1 —n) tends
to 0o except n = 0 and so the first term only (n = 0 term) survives in Eq. (21), the equation (21)

. 2
becomes as follows, J3(1,1,1;u) = % (%) (27 —2log2+ log(%)) , where v is Kuler’s constant

and we used (1) = —y, ¥(1/2) = —log4 — v.[10]
We try to integrate Eq. (8) directly by using contour integral on the left half plane. At this time



considering the mass shell condition of final photons p? = p3 = 0, it is better for integrating on
the right half plane with variables s,and, ¢, and after that, integrating on the left half plane with
variable u.

From Eq. (8) we have again, putting w = 2, the following formula

Js(1,1,1; ) = w2 (—p 2m/ / / ds dt du (22)

F'l4+s+u)l(l+t+u)l(1+s+H)I(1+s+t+u)
I'(3 4+ 2s + 2t + 2u)

T (—8)D(—t)T(—u)

2 s 2 t ST\ U
(=) (=) (2)"
Integrating with respect to variables s, ¢, we have
—72 100 o
J(1,1, 1) = 72—7”/00 du | Z_ ['(—u) (23)
J1,52=0
D1+ 51 +w)D(L+ g0 + w1+ 1 + j2)D(L+ 51 + jo +u)
(=1)71(=1)7251152!T(3 + 251 + 242 + 2u)

(- Y (-2)"(-2)"

Because we have the relation
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Eq. (23) has the triple poles as j; = jo = 0.
Carrying out the residue calculation, we obtain as follows,
d? 3
B L1 p) = =5 2, o [(+ j3 + 1)*Integrand] . (25)
u=—7j3—1

We get the following final result
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It is tedious a bit to evaluate Eq. (26) in detail.

4 The analytic continuation method

Hyper geometric function 5 F}(a, b; ¢; z) defined by

ni(c)n

converges on the condition of |z| < 1. Now we consider the analytic continuation of o F} (a, b; ¢; 2) to
the region |%| < 1. By taking such a situation we can make the formula which holds in the region
Ss1 > 4/12.

The analytic continuation formula of 3 F} (a, b; ¢; z) is expressed as follows,[10]

Fiabies) = Y Ol (27)
n=0
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Applying this formula to 2 F1(1/2,1/2;3/2; z) ,because of I'(a —b) = T'(b—a) = T'(0) = co we can’t
obtain the meaningful formula by analytic continuation of 9F1(1/2,1/2;3/2;2). To get rid of this
difficulty we introduce an idea of double limit procedure as follows,

2F1(%,%;;;Z>=2%2F1(%+6,%—E;g;z)- (29)

By using this procedure, 2F(1/2,1/2;3/2; z) becomes as follows,

113 §\ 1 1 3 e I'(3)r(-2¢) 1y i+e
ZFI(E’E’E’z)_E%[2FI(§+6’§_6’5’2)]_1%lr(1 )(__) (30)

T'(3)T(2¢) ( 1)%_5 1

1
xoFy (= + 661426 1/2)+ Fi(=
215 +eqlt2enl/z) Tl +eT(1+e) 2Fi(

5 —€,—€61—2e: l/z)]

Furthermore we utilize the following formulas[11]
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Substituting Eqgs. (31)(32)(33)(34)(35) to Eq. (30) yields a meaningful formula analytically con-
tinued from the region |z| < 1 to the region |z| > 1.

That is,
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= iy (3R (5 e 26 )
S () (et )]
_ %m(%,o; 1; %)g% [r(—2¢)( - %)%—1—64-{'(26)( - %)%_E]

Furthermore we can show that the divergent terms cancel each other by exploiting the double limit
procedure as follows,
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Because
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Putting z = s1/4u2, we obtain the formula effective in the region s; > 4y as follows,
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Comparing Eq. (40) to Eq. (21), we know that Eq. (40) is consistent with the Eq. (21) apart from

an additional constant —2log2 .
Now let us prove the following formula that we used when deriving Eq. (39) in the two ways,

1 1
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Euler’s integral representation of Hyper geometric function o F}(a, b; ¢; z) is expressed as follows,
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(i) The way that we integrate Eq. (41) immediately ;
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Therefore we can show that 9 F1(1/2,0;1;2) = 1 holds.
5 Concluding Remarks can obtain the result effective on the condition

s1 > 4p2. The first way was the method of the
calculation that we employ contour integral on
the left half complex plane, different from the
contour integral in the previous paper. At that
time it is known that the double poles appear in
the integrand. By using this method of calcula-
tion we could gain the formula effective in the
region s; > 4u2. But it was that we integrated
the formula of Mellin Barnes representation of
o F(a,b;c; z) on the contour of the left half com-

In this paper we reviewed the calculation
method of Feynman propagator which appears
when we calculate the decay width of decay pro-
cess K g—>2fy, and discovered by Davydychev and
others. The result of the calculation was effec-
tive on the condition s; < 4u?. But in this
case we must have the formula which holds on
the condition s; > 4p?. In this paper we pro-
posed two ways of the calculation by which we



plex plane. T think that we have to perform the
triple integral of Eq. (8) on the contour of the
left half complex plane directly. In this situation
three cases are considered when we do the con-
tour integrals of Eq. (8), that is, (i) on the right
half plane with respect to variables s,¢ and on
the left half plane with variable u. (ii) on the
right half plane with one of variables s, t,u and
on the left half plane with remaining two vari-
ables. (iii) on the left half plane with respect
to variables s,¢,u all. In the cases of (ii) and
(iii) the calculations may cause a few problems
as convergence, integrability, and so on. The sec-
ond way of the calculation was the method that
we use analytic continuation of Hyper geomet-

ric function. In this case we had to carry out
the analytic continuation from the region |z| < 1
to the region || < 1. We could not get the
meaningful formula because I'(0) = oo appeared
in the formula. Therefore we proposed double
limit procedure technique. We could obtain the
meaningful result by using this technique. But
this result is not consistent with the one of sec-
tion 3 by the contour integral on the left half
plane completely. We may be able to understand
why the difference between both results by two
methods yields by considering other contour of
the integration, for example, as Pochhammer’s
contour.
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