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Abstract: In an undirected graph, the feedback vertex set (FVS) problem is to

find the set of vertices of minimum cardinality whose removal renders the graph

acyclic. The FVS problem has applications in several areas such as combinato-

rial circuit design, synchronous systems, computer systems, and very-large-scale

integration (VLSI) circuits. The FVS problem is known to be NP-hard for sim-

ple graphs, but interesting polynomial-time solutions have been found for special

classes of graphs. The intersection graph of a collection of arcs on a circle is called

a circular-arc graph. A normal Helly circular-arc graph is a proper subclass of

the set of circular-arc graphs. In this paper, we present an algorithm that takes

O(n+m) time to solve the FVS problem in a normal Helly circular-arc graph with

n vertices and m edges

Key words: Design and analysis of algorithms, graph theory, feedback vertex

set, normal Helly circular-arc graphs, intersection graphs;
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1 Introduction

Let F be a family of nonempty sets. A simple graph
G is the intersection graph of F if there exists a one-
to-one correspondence between the vertices of G and
the sets in F , such that two vertices in G are ad-
jacent if and only if their corresponding sets have a
nonempty intersection. If F is a family of intervals
on the real line, G is called an interval graph [1]. Fur-
thermore, a graph G is called a circular-arc graph if
it is the intersection graph of a collection of arcs on
a circle [1]. Circular-arc graphs properly contain a
class of interval graphs as a subclass. Circular-arc
graphs have applications in areas such as genetics [2],
traffic control [1], multidimensional scaling [3], com-
piler design [4], ring network modeling [5]. In recent
years, circular-arc graphs have been investigated ex-
tensively from both theoretical and algorithmic per-
spectives [6, 7, 8, 9].

Let G = (V,E) be a simple graph, where V is
the set of vertices and E is the set of edges of G, with
|V | = n and |E| = m. Suppose that V ′ is a nonempty
subset of V . The subgraph of G whose vertex set is
V ′ and whose edge set is the set of those edges of
G that have both vertices in V ′ is called the induced
subgraph on V ′ and is denoted by G[V ′] [10]. A cycle
with no repeated vertices is a simple cycle. In this
paper, the term “cycle” denotes “simple cycle.” A
feedback vertex set (FVS) consists of a subset F ⊆ V
such that each cycle in G contains at least one vertex
in F . In other words, a subset F ⊆ V is an FVS of G
if the subgraph induced by G[V − F ] is acyclic. The
FVS problem is to find an FVS of minimum cardinal-

ity (MFVS) in G. The FVS problem has applications
in several areas such as deadlock prevention in oper-
ating systems [11], combinatorial circuit design [12],
VLSI circuits [13], and information security [14].

The FVS problem is known to be NP-hard for
general graphs [15] and bipartite graphs [16]. In gen-
eral, it is known that more efficient algorithms can
be developed by restricting classes of graphs. For in-
stance, interesting polynomial-time solutions for the
FVS problem have been found for special classes
of graphs, such as interval graphs [17, 18], permu-
tation graphs [19], butterfly networks [20], hyper-
cubes [21], star graphs [22], diamond graphs [23], and
rotator graphs [24]. Saha and Pal presented an algo-
rithm that takes O(n+m) time for the FVS problem
in interval graphs using maximal clique decomposi-
tion [18]. The algorithm obtains an MFVS in an in-
terval graph by breaking all cycles for each maximal
clique. Circular-arc graphs are a natural generaliza-
tion of interval graphs. However, the algorithm pre-
sented by Saha and Pal [18] cannot be directly applied
to circular-arc graphs because the number of maxi-
mal cliques in interval graphs is at most the number
of vertices, whereas circular-arc graphs may have an
exponential number of maximal cliques [25].

Normal Helly circular-arc models (NHCM) are
precisely those without three or less arcs covering
the whole circle [26, 27]. Caimi et al. showed that
the number of maximal cliques is at most n for any
normal Helly circular-arc graph with n vertices and
m edges, and that all maximal cliques can be easily
found in O(n + m) time [28]. In this study, we pro-
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(a) A normal Helly circular-arc model CM1 (b) A normal Helly circular-arc graph G1

Figure 1: Normal Helly circular-arc model CM1 and graph G1

pose an algorithm that takes O(n +m) time for the
FVS problem in normal Helly circular-arc graphs.

The remainder of this paper is organized as fol-
lows. We state the definitions and notations used
throughout this paper in Section 2. Next, we present
our algorithm for the FVS problem and analyze its
complexity in Section 3. Finally, we summarize our
findings in Section 4 and conclude the paper by briefly
discussing the scope for future work.

2 Definitions and Notations

In this section, we provide the definitions and relevant
notations used throughout the paper. These establish
the basis of the algorithm presented in Section 3.

2.1 Circular-arc Model and its Corre-
sponding Graph

First, we provide the definitions of a circular-arc
model and its corresponding graph. Consider a unit
circle C and a family F of n arcs A1, A2, . . . , An

along the circumference of C. Each arc Ai has two
endpoints, a left endpoint ai and a right endpoint
bi, and is denoted by Ai = [ai, bi]. The left end-
point ai (resp., right endpoint bi) is the last point en-
countered when traversing Ai counterclockwise (resp.,
clockwise). Without loss of generality, the coordi-
nates of all left and right endpoints are distinct and
are assigned consecutive integer values 1, 2, . . . , 2n
clockwise. Arc numbers i, j are assigned to each arc
in increasing order of their right endpoints bis, i.e.,
Ai < Aj if bi < bj . The geometric representation

described above is called a circular-arc model (CM ).
A graph G = (V,E) is called a circular-arc graph if
there exists a family of arcs F = {A1, A2, . . . , An}
such that there is a one-to-one correspondence be-
tween vertex i ∈ V and Ai ∈ F such that an edge
(i, j) ∈ E if and only if Ai intersects with Aj in the
CM. It is easy to see that a CM that fails to cover
some points on the circle C is topologically the same
as an interval model. Therefore, circular-arc graphs
are a super-class of interval graphs.

2.2 Normal Helly circular-arc Model
and its Corresponding Graph

A normal Helly circular-arc model is a circular-arc
model where no the set of three arcs of F cover the
entire circle C [26, 27]. A normal Helly circular-arc
graph is an intersection graph corresponding to a nor-
mal Helly circular-arc model. Examples of a normal
Helly circular-arc model and its corresponding graph
are shown in Figure 1. Figure 1(a) shows a normal
Helly circular-arc model CM1 consisting of 12 arcs.
For a normal Helly circular-arc model consisting of n
arcs, an arc Ai with bn ∈ Ai and i < n is called a
back-arc. The set of all back-arcs is called the back-
arc set and is denoted by BA. For CM1, shown in
Figure 1, we have a back-arc set BA = {A1, A2} by
bn = b12 = 22 ∈ A1, A2. If a CM has no back-arc,
it is topologically equivalent to an interval model. In
this study, we assume that a CM has at least one
back-arc. A normal Helly circular-arc graph is an in-
tersection graph corresponding to a CM. Figure 1(b)
shows the normal Helly circular-arc graph G1 corre-
sponding to CM1.



Table 1: Example of R(i)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ai -5 -3 -1 0 3 5 10 11 8 13 16 18 19 21
bi 1 2 4 6 7 9 12 14 15 10 20 22 25 26

R(i) 4 4 5 6 6 9 9 10 10 11 13 14 14 14

2.3 Maximal Clique Decomposition

A maximal clique is a clique to which no further ver-
tices of a graph can be added such that it remains a
clique. The maximal cliques of G1, shown in Figure 1,
are MC1 = {1, 2, 3, 4}, MC2 = {3, 4, 5}, MC3 =
{4, 5, 6}, MC4 = {6, 9}, MC5 = {7, 8, 9}, MC6 =
{8, 9, 10}, MC7 = {10, 11}, MC8 = {11, 12, 1}, and
MC9 = {12, 1, 2}. All maximal cliques can be gener-
ated in O(n + m) time for a normal Helly circular-
arc graph with n vertices and m edges [29, 28].
Let Nj be the cardinality of MCj , i.e., N1 = 4,
N2 = 3, N3 = 3, N4 = 2, N5 = 3, N6 = 3,
N7 = 2, N8 = 3, and N9 = 3. Let r be the num-
ber of maximal cliques of G1. For each vertex i
in G1, σ(i) = |{MCj | i ∈ MCj , Nj ⩾ 3, 1 ⩽ j ⩽ r}|
and ρ(i) = |{MCj | i ∈ MCj , Nj = 2, 1 ⩽ j ⩽ r}|.

For graph G1 shown in Figure 1, σ(1) = 3, σ(2) =
2, σ(3) = 2, σ(4) = 3, σ(5) = 2, σ(6) = 1, σ(7) = 1,
σ(8) = 2, σ(9) = 2, σ(10) = 1, σ(11) = 1, and
σ(12) = 2. Moreover, ρ(1) = 0, ρ(2) = 0, ρ(3) = 0,
ρ(4) = 0, ρ(5) = 0, ρ(6) = 1, ρ(7) = 0, ρ(8) = 0,
ρ(9) = 1, ρ(10) = 1, ρ(11) = 1, and ρ(12) = 0. For
the sake of convenience, we denote the σ and ρ value
sequences of G1 by σ = [3, 2, 2, 3, 2, 1, 1, 2, 2, 1, 1, 2]
and ρ = [0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0], respectively.

2.4 Minimum Feedback Triangle-free
Vertex Set

Throughout this paper, we use the term triangle to
denote a cycle of length three. For a simple graph
G = (V,E), F (⊂ V ) is a feedback triangle-free vertex
set (FTS) if G[V −F ] has no triangle. In the example
shown in Figure 1, {1, 4, 8} or {1, 4, 9} is a minimum
cardinality FTS (MFTS) of G1.

A chordal graph is a simple graph in which ev-
ery cycle of length four or greater has a cycle chord.
Interval graphs are a subclass of chordal graphs,
i.e., they have no chordless cycle of length greater
than three [18]. Hence, an MFTS is obviously an
MFVS for interval graphs. On the other hand, nor-
mal Helly circular-arc graphs are a superclass of in-
terval graphs and not a subclass of chordal graphs.
They can have some chordless cycles of length greater

than three. For example, the graph G1 shown in
Figure 1 has chordless cycles ⟨1, 4, 6, 9, 10, 11, 1⟩ and
⟨2, 3, 5, 6, 9, 10, 11, 12, 2⟩ of length six and eight, re-
spectively. If F is an MFTS and not an MFVS
of a normal Helly circular-arc graph G, G[V − F ]
has a chordless cycle of length greater than three.
A chordless cycle in G[V − F ] is called a periph-
ery. For example, in Figure 1, F = {1, 4, 8} is an
MFTS of G1, and G1[V − F ] consists of a periphery
⟨2, 3, 5, 6, 9, 10, 11, 12, 2⟩. Therefore, F = {1, 4, 8} is
not an MFVS, although F is an MFTS of G1.

3 Algorithm and Its Correct-
ness

In this section, we present our algorithm for solv-
ing the FVS problem for a normal Helly circular-arc
graph.

3.1 Test Whether a CM is normal
Helly

First, we must check whether a given circular-arc
model CM is normal Helly. To do this, we employ
an extended circular-arc model (ECM) constructed
from CM . An ECM is constructed as follows. A
given CM is cut at endpoint bn (point 22 in CM1

in Figure 1) on circumference C, and then, it is un-
rolled onto the real horizontal line. Moreover, each
circular-arc Ai = [ai, bi] in the CM is changed into a
horizontal line segment Ii = [ai, bi] called an interval.
Here, each circular-arc Ai = [ai, bi] with ai > bi in
the CM is replaced by two intervals Ii = [ai − 2n, bi]
and Ii+n = [ai, bi + 2n]. Note that Ii+n is a copy of
Ii, and both Ii and Ii+n in the ECM correspond to
the same circular-arc Ai in the CM . Figure 2 shows
ECM1 constructed from CM1 shown in Figure 1.

Next, we define a function R(i). R(i) is the right-
most interval (including itself) that intersects interval
Ii in an ECM , where if no interval intersects Ii then
let R(i) be i. Formally, R(i) = max{ k | bi ∈ Ik, i ⩽
k ⩽ 2n}. All R(i) are obtained in O(n) time using
prefix computation. Table 1 lists the details of R(i)
for ECM1.
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Figure 3: Illustration of three arcs Ap, Aq, and Ar that cover the entire circle.

We will use an ECM to check whether a given
CM is normal Helly. By definition, if CM is a nor-
mal Helly circular-arc model, no the set of three arcs
cover the entire circle C [26, 27].

Lemma 1 Let ECM be an extended circular-arc
model constructed from CM . If bR(R(i)) < ai + 2n
for all Ii ∈ BA in ECM , a given circular-arc model
CM is normal Helly.

Proof: By definition, if CM includes at least one
set of three arcs that cover the entire circle C, it is
not normal Helly. Suppose that CM is not normal
Helly and contains the set of three arcs Ap, Aq, Ar

that cover the entire circle C. One or two of these
three arcs Ap, Aq, Ar must be back-arcs because if
none of them is a back-arc, they cannot cover the en-
tire circle. Moreover, if all of Ap, Aq, Ar are back-arcs,
at least one triangle is constructed by them. Thus,
when three arcs Ap, Aq, Ar cover the entire circle, one
or two of them must be back-arcs.

Figure 3 shows examples of three arcs Ap, Aq, Ar

covering the entire circle: ((a) is a case where Ap ∈

BA and (b) is a case where Ap, Ar ∈ BA). R(i) is
the rightmost interval (⩾ i) that intersects interval Ii
in ECM . Figure 3(a) shows a case where q = R(p)
and r = R(q) = R(R(p)). If CM is not normal Helly,
there exist the set of three arcs Ap, Aq, Ar that cover
the entire circle in CM , i.e., IR(R(p)) and Ip+n must
intersect in ECM . Note that both of Ip and Ip+n in
ECM correspond to the same circular-arc Ap in CM .

Thus, if bR(R(i)) < ai + 2n for all Ai ∈ BA
in ECM , a given circular-arc model CM is normal
Helly. 2

We present an algorithm (Algorithm 1) to check
whether a given circular-arc model CM is normal
Helly. The algorithm works as follows. In Step 1,
an ECM is constructed from a given CM in O(n)
time. In Step 2, R(i), 1 ⩽ i ⩽ n, are computed. This
step can be executed in O(n) time using prefix com-
putation. In Step 3, we check whether there are the
set of three arcs that cover the entire circle. If there
is no such set of three arcs, a given CM is normal
Helly by Lemma 1. Step 3 can be executed in O(n)
time. Thus, Algorithm 1 can test whether a given
circular-arc model CM is normal Helly in O(n) time.



Algorithm 1: Check of a CM whether it is normal Helly or not

Input: The left and right points ai, bi of a CM .

(Step 1)
Construct an ECM from a CM .
(Step 2)
for all Ii, 1 ⩽ i ⩽ n do compute R(i) ;
(Step 3)
if bR(R(i)) < ai + 2n for all i ∈ BA then

The CM is normal Helly;
else

The CM is not normal Helly;
end

3.2 How to Compute an MFVS

In this section, we present an algorithm for solving the
FVS problem for a normal Helly circular-arc graph.
We will concisely describe the outline of our algo-
rithm. First, we decompose a given normal Helly
circular-arc graph into maximal cliques. An FTS is
obtained by removing Nj −2 vertices from each max-
imal clique MCj . An MFTS is constructed by mini-
mizing the number of removed vertices. At this point,
if the constructed MFTS includes no periphery, it is
an MFVS. Otherwise, we can obtain an MFVS by
including a vertex for breaking the periphery in the
MFTS.

Let G = (V,E) be a normal Helly circular-arc
graph corresponding to a CM. Algorithm 2 receives
as an input the left and right points ai, bi of each Ai

and back-arc set BA, and outputs an MFVS F of G.
Now, we show how Algorithm 2 finds an MFVS of a
given normal Helly circular-arc graph G. We use the
graph G1 shown in Figure 1 as an example to illus-
trate Algorithm 2 step by step (the updated part is
underlined).

BEGIN

Step 1.
MC1 = {1, 2, 3, 4}, MC2 = {3, 4, 5}, MC3 =
{4, 5, 6}, MC4 = {6, 9}, MC5 = {7, 8, 9},
MC6 = {8, 9, 10}, MC7 = {10, 11}, MC8 =
{11, 12, 1}, and MC9 = {12, 1, 2}.

Step 2.
σ = [ 3, 2, 2, 3, 2, 1, 1, 2, 2, 1, 1, 2 ],
ρ = [ 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0 ].

Step 3.

Initialization
U1 = {MC1,MC2,MC3,MC5,MC6,MC8,MC9},
F = ∅.

1st iteration

[k = 1, U2 = {MC1,MC8,MC9} ]
MC1 = {1, 2, 3, 4}, F = {1, 4},
σ = [ 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2 ].
MC8 = {11, 12, 1}, F = {1, 4},
σ = [ 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 0, 1 ].
MC9 = {12, 1, 2}, F = {1, 4},
σ = [ 0, 0, 1, 2, 2, 1, 1, 2, 2, 1, 0, 0 ].
U1 = {MC2,MC3,MC5,MC6}.

2nd iteration

[k = 4, U2 = {MC2,MC3} ]
MC2 = {3, 4, 5}, F = {1, 4},
σ = [ 0, 0, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0 ].
MC3 = {4, 5, 6}, F = {1, 4},
σ = [ 0, 0, 0, 0, 0, 0, 1, 2, 2, 1, 0, 0 ].
U1 = {MC5,MC6}.

3rd iteration

[k = 8, U2 = {MC5,MC6} ]
MC5 = {7, 8, 9}, F = {1, 4, 9},
σ = [ 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0 ],
ρ = [ 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0 ].
MC6 = {8, 9, 10}, F = {1, 4, 9},
σ = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ].
U1 = ∅.

Step 4.
F = {1, 4, 9} is an MFVS because G[V −F ] has
no periphery.

END



Algorithm 2: Algorithm for obtaining MFVS

Input: The left and right points ai, bi of each circular-arc Ai, i = 1, 2, . . . , n and a back-arc set
BA.

Output: The minimum feedback vertex set F .

(Step 1)
Compute all maximal cliques MCj , j = 1, 2, . . . , r ;
Let r be the total number of maximal cliques of G ;

(Step 2)
Compute all σ(i) for i = 1, 2, . . . , n ;
Compute all ρ(i) for i = 1, 2, . . . , n ;

(Step 3) /* Obtain MFTS */
Initialization ;
U1 := {MCj | Nj ⩾ 3, j = 1, 2, . . . , r} ;
F := ∅ ;
while U1 ̸= ∅ do

k := arg maxσ(i) ;
U2 := {MCj | k ∈ MCj ,MCj ∈ U1} ;
for all MCj ∈ U2 do

if |MCj − F | ⩾ 3 then
Select |MCj − F | − 2 vertices in lexicographical order with respect to (σ(i), ρ(i))
where (σ(i), ρ(i)) > (σ(j), ρ(j)) if σ(i) > σ(j) or σ(i) = σ(j), ρ(i) > ρ(j) ;
Add the selected |MCj − F | − 2 vertices to F ;

end
for i ∈ MCj do σ(i) := σ(i)− 1 ;

end
U1 := U1 − U2 ;

end

(Step 4) /* Obtain MFVS */
if G[V − F ] has a periphery then

if |BA− F | = 1 then
Add vertex k (BA− F = {k}) to F ;
Output F ;

end
if |BA− F | = 2 then

We select a vertex k such that ak = min{ak1 , ak2} (BA− F = {k1, k2}) ;
Add vertex k to F ;
Output F ;

end

else
Output F ;

end

In Step 1, we compute all maximal cliques MCj ,
1 ⩽ j ⩽ r, for G1 by applying the algorithm presented
in [29, 28]. In Step 2, for all 1 ⩽ i ⩽ n, we com-
pute σ(i) = |{MCj | i ∈ MCj , Nj ⩾ 3, 1 ⩽ j ⩽ r}|
and ρ(i) = |{MCj | i ∈ MCj , Nj = 2, 1 ⩽ j ⩽ r}|. In
Step 3, we efficiently compute an MFTS of G1. A
graph obtained by deleting all but two vertices from
each maximal clique MCj(Nj ⩾ 3), 1 ⩽ j ⩽ r, has
no triangle. Step 3 constructs an MFTS by adding
Nj − 2 vertices of each MCj(Nj ⩾ 3) to F . In this

example, Step 3 is executed in seven iterations be-
cause there are seven maximal cliques with Nj ⩾ 3.
After executing Step 3, we obtain F = {1, 4, 9} as an
MFTS of G1. In Step 4, we obtain F = {1, 4, 9} as
an MFVS of G1 because G[V − F ] has no periphery.

Lemma 2 shows that F is an MFTS of G following
the execution of Step 3 of Algorithm 2.

Lemma 2 Let G be a normal Helly circular-arc
graph. Following the execution of Step 3, F is an



MFTS of G.

Proof: Each triangle contained in G is a subset of
any maximal clique MCj(Nj ⩾ 3) in G. A graph
obtained by deleting all but two vertices from each
maximal clique MCj(Nj ⩾ 3), 1 ⩽ j ⩽ r, has
no triangle. Thus, a set F consisting of Nj − 2
vertices of each MCj(Nj ⩾ 3), 1 ⩽ j ⩽ r, is
an FTS of G. It is obvious that the cardinality
of F can be reduced by including vertices that ap-
pear in many maximal cliques in F . By definition,
σ(i) = |{MCj | i ∈ MCj , Nj ⩾ 3, 1 ⩽ j ⩽ r}|. In or-
der to obtain an MFTS, we construct F by selecting
Nj − 2 vertices in decreasing order of σ.

In Step 3, initially, we set U1 = {MCj | Nj ⩾
3, j = 1, 2, . . . , r} and F = ∅. Next, we com-
pute k = arg maxσ(i) and set U2 = {MCj | k ∈
MCj ,MCj ∈ U1}, i.e., vertex k is contained in the
largest number of maximal cliques, and U2 is the set
of maximal cliques containing k. Therefore, we can
reduce the cardinality of F by breaking the triangles
in MCj ∈ U2 by priority.

In the first iteration, we select all vertices ex-
cept two minima with σ values in MCj and add
them to F for each MCj ∈ U2. Here, as-
sume that U2 consists of m maximal cliques, i.e.,
U2 = {MC1,MC2, . . . ,MCm}. Then, a subgraph
G[MC1−F ] has no triangle and F is clearly an MFTS
of G[MC1]. In the next step, if |MC2 − F | < 3, no
vertex is added to F . This implies that the elimi-
nation of vertices in F obtained in the previous step
breaks all triangles of MC2. If |MC2 − F | ≥ 3, we
select |MC2−F |− 2 vertices in decreasing order of σ
in MC2 − F and add them to F . It is obvious that
the cardinality of F can be reduced by adding vertices
that appear in several maximal cliques in F . Follow-
ing this step, G[MC1∪MC2−F ] has no triangle and
F is an MFTS of G[MC1 ∪ MC2]. Similarly, in the
next step, if |MC3 −F | ≥ 3, we select |MC3 −F | − 2
vertices in decreasing order of σ in MC3−F and add
them to F . G[MC1∪MC2∪MC3−F ] has no triangle,
and F is an MFTS of G[MC1∪MC2∪MC3]. Using a
similar argument, following the execution of the m-th
step, G[MC1∪MC2∪· · ·∪MCm−F ] has no triangle,
and F is an MFTS of G[MC1 ∪MC2 ∪ · · · ∪MCm].

In the second iteration, we update U1 to be U1−U2

and calculate k = arg maxσ(i). As in the case of the
first iteration, we select all vertices except two min-
ima with σ values in MCj and add them to F for
each MCj ∈ U2. Step 3 of Algorithm 2 repeats the
processes described above until U1 becomes an empty
set. The method described above thus constructs an
MFTS F of the normal Helly circular-arc graph G. 2

Lemma 3 Let G be a normal Helly circular-arc
graph and let F be an MFTS of G. After executing

Step 3, if G[V −F ] has no periphery, F is an MFVS
of G.

Proof: Because F is an MFTS of G, G[V − F ] has
no triangle. If G[V − F ] has neither a triangle nor a
periphery, G[V −F ] has no cycle. Thus, such F is an
MFVS of G. 2

Here, we explain how ρ(i) are used to find an
MFTS in Step 3 of Algorithm 2. In the example
shown in Figure 1, both vertex sets {1, 4, 8} and
{1, 4, 9} are MFTSs of G1. In general, not all MTFSs
of G1 are MFVSs of G1. For example, a set {1, 4, 9}
is an MFVS of G1; however, {1, 4, 8} is not an MFVS
because a subgraph G1[V − {1, 4, 8}] has a periph-
ery ⟨2, 3, 5, 6, 9, 10, 11, 12, 2⟩. We describe how Step 3
of Algorithm 2 constructs an MFTS F such that
G[V − F ] has no periphery, if possible.

Consider the case where a maximal clique
MCj(Nj ⩾ 3) and a periphery have a vertex v (5
in Figure 4(a)) in common. In Step 3, we select
|MCj−F |−2 vertices fromMCj to break all triangles
inMCj and include them in F . Here, if the vertex v is
in F , G[V −F ] has neither a triangle nor a periphery.
A vertex v containing MCj and a periphery in com-
mon must be included in some MCk(Nk = 2) ({1, 5}
or {5, 6} in Figure 4(a)). Moreover, we have no max-
imal clique MCk(Nk = 2) containing vertices u (2, 3,
4) except v in MCj . This is because it is clear from
the corresponding model that if there exists a vertex
x adjacent to u ( ̸= v) in MCj , G must have a triangle
⟨uvx⟩. Therefore, we select |MCj − F | − 2 vertices
in lexicographical order with respect to (σ(i), ρ(i))
where (σ(i), ρ(i)) > (σ(j), ρ(j)) if σ(i) > σ(j) or
σ(i) = σ(j), ρ(i) > ρ(j).

Next, we consider the case of a maximal clique
MCj(Nj ⩾ 3) and a periphery with two vertices v, w
(2 and 5 in Figure 4(b)) in common. It is obvious that
a periphery in G is broken by removing either v or w
from G. In this case, for v and w, there exist maxi-
mal cliques MCk(Nk = 2) ({1, 2} and {5, 6} in Fig-
ure 4(b)) containing v and w, respectively. Moreover,
we have no maximal clique MCk(Nk = 2) contain-
ing vertex u, except v and w (3, 4 in Figure 4(b)) in
MCj . This is because it is clear from the correspond-
ing model that if there exists a vertex x adjacent to
u(̸= v) in MCk, G must have a triangle ⟨uvx⟩ or
⟨uwx⟩. Therefore, we select |MCj − F | − 2 vertices
in lexicographical order with respect to (σ(i), ρ(i))
where (σ(i), ρ(i)) > (σ(j), ρ(j)) if σ(i) > σ(j) or
σ(i) = σ(j), ρ(i) > ρ(j).

By executing the method described above, Step 3
outputs an MFTS F such that a normal Helly
circular-arc graph G[V − F ] has neither a triangle
nor a periphery, if possible.
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Figure 5: Normal Helly circular-arc model CM2 and graph G2

In the third iteration of the execution example
shown in Figure 1, we can add either vertex 8 or ver-
tex 9 into F forMC5 = {7, 8, 9} because σ(7) = 0 and
σ(8) = σ(9) = 1. Therefore, we add vertex 9 into F
because ρ(8) = 0 and ρ(9) = 1. F = {1, 4, 9}, which
we obtained after executing Step 3, is an MFTS of G1

by Lemma 2. Moreover, by Lemma 3, F = {1, 4, 9}
is an MFVS because G1[V − F ] has no periphery.

Thus far, we have presented an example where an
MFTS of a normal Helly circular-arc graph G is also
an MFVS of G. However, there exist cases where an
MFTS of G obtained by executing Step 3 is not an
MFVS of G. The graph G2 shown in Figure 5 is a
normal Helly circular-arc graph. Next, we describe
the procedure to construct an MFTS of G2 shown in
Figure 5 by executing Step 3.

BEGIN

Step 1.
MC1 = {1, 2, 3, 4}, MC2 = {3, 4, 5}, MC3 =
{4, 5, 6}, MC4 = {6, 7, 9}, MC5 = {7, 8, 9},
MC6 = {8, 9, 10}, MC7 = {10, 11}, MC8 =
{11, 12, 1}, and MC9 = {12, 1, 2}.

Step 2.
σ = [ 3, 2, 2, 3, 2, 2, 2, 2, 3, 1, 1, 2 ],
ρ = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0 ].

Step 3.

Initialization
U1 = {MC1,MC2,MC3,MC4,MC5,MC6,MC8,MC9},
F = ∅.

1st iteration

[k = 1, U2 = {MC1,MC8,MC9} ]
MC1 = {1, 2, 3, 4}, F = {1, 4},
σ = [ 2, 1, 1, 2, 2, 2, 2, 2, 3, 1, 1, 2 ].
MC8 = {11, 12, 1}, F = {1, 4},
σ = [ 1, 1, 1, 2, 2, 2, 2, 2, 3, 1, 0, 1 ].
MC9 = {12, 1, 2}, F = {1, 4},
σ = [ 0, 0, 1, 2, 2, 2, 2, 2, 3, 1, 0, 0 ].
U1 = {MC2,MC3,MC4,MC5,MC6}.

2nd iteration

[k = 9, U2 = {MC4,MC5,MC6} ]
MC4 = {6, 7, 9}, F = {1, 4, 9},
σ = [ 0, 0, 1, 2, 2, 1, 1, 2, 2, 1, 0, 0 ].
MC5 = {7, 8, 9}, F = {1, 4, 9},
σ = [ 0, 0, 1, 2, 2, 1, 0, 1, 1, 1, 0, 0 ].
MC6 = {8, 9, 10}, F = {1, 4, 9},
σ = [ 0, 0, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0 ].
U1 = {MC2,MC3}.

3rd iteration



[k = 4, U2 = {MC2,MC3} ]
MC2 = {3, 4, 5}, F = {1, 4, 9},
σ = [ 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 ].
MC3 = {4, 5, 6}, F = {1, 4, 9},
σ = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ].
U1 = ∅.

END

After executing Step 3, F = {1, 4, 9} constructed
in this example is an MFTS of G2. Removing all ver-
tices in F = {1, 4, 9} breaks all triangles in G2. How-
ever, F is not an MFVS of G2 because G2[V −F ] con-
sists of a periphery ⟨2, 3, 5, 6, 7, 8, 10, 11, 12, 2⟩. The
periphery remains unbroken because it does not con-
tain any of F = {1, 4, 9}. In fact, there exists no
MFVS of cardinality three in G2. Hence, we can ob-
tain an MFVS by including a vertex for breaking the
periphery in F if G[V − F ] consists of a periphery.

Lemma 4 Let G be a normal Helly circular-arc
graph. If F is an MFTS and not an MFVS of G,
G[V − F ] has a periphery that must contain one or
two back-arcs.

Proof: G[V − F ] has no triangle because F is an
MFTS of G. Moreover, F is not an MFVS of G.
Thus, G[V −F ] must have a chordless cycle of length
greater than three, i.e., a periphery.

As mentioned in Section 2, interval graphs are a
subclass of normal Helly circular-arc graphs and have
no periphery. A normal Helly circular-arc model from
which all back-arcs are removed is topologically equiv-
alent to an interval model. Therefore, G[V −F ] must
contain at least one back-arc because it has a periph-
ery.

G[V −F ] does not contain three or more back-arcs.
If G[V −F ] has three back-arcs, these three back-arcs
cover a point (bn) on the circumference of a circle
C by the definition of a back-arc. This implies that
G[V −F ] contains a triangle. Thus, it contradicts the
proposition that F is an MFTS of G.

Thus, if F is an MFTS and not an MFVS of G,
G[V − F ] has a periphery that must contain one or
two back-arcs. 2

Lemma 5 Let G be a normal Helly circular-arc
graph. Following the execution of Step 4 of Algo-
rithm 2, F is an MFVS of G.

Proof: By Lemma 4, if G[V − F ] consists of a pe-
riphery, such a periphery must contain one or two
back-arcs.

In the case where G[V −F ] consists of a periphery
and contains one back-arc A1, we can break the pe-
riphery by removing A1 (Figure 6(a)). Thus, we can
obtain an MFVS by adding A1 to F .

We consider the cases where G[V − F ] consists of
a periphery and contains two back-arcs (A1 < A2).
Because both back-arcs cover point bn by definition,
these back-arcs must intersect. There are two possi-
ble cases when G[V −F ] contains two back-arcs. The
first satisfies a1 < a2 (Figure 6(b)), and the second
satisfies a1 > a2 (Figure 6(c)). For the former, the
periphery is broken by removing A1. For the latter,
the periphery is broken by removing A2. Therefore,
we can break the periphery by removing a back-arc
Ak such that ak = min{a1, a2}.

Thus, we can construct an MFVS after executing
Step 4. 2
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Figure 6: Illustration of Lemma 5



In Step 3, we obtain F = {1, 4, 9} in the example
shown in Figure 5. In Step 4, G[V −F ] has a periph-
ery ⟨2, 3, 5, 6, 7, 8, 10, 11, 12, 2⟩. We include vertex 2
in F by |BA−F | = 1 and BA−F = {2}. Therefore,
we have F = {1, 2, 4, 9}, and thus, F is an MFVS of
G2.

Next, we analyze the complexity of Algorithm 2.
In Step 1, all maximal cliques of G are computed in
O(n + m) time [29, 28]. In Step 2, σ(i) and ρ(i)
are computed for all i ∈ V . The complexity of this
step depends on the number of maximal cliques of
G, which is at most the number of vertices of G [28].
Thus, Step 2 can be executed in O(n) time. In Step 3,
an MFVS F of G is constructed. This step requires
as many iterations as the number of maximal cliques.
Thus, Step 3 is executed in O(n) time. In Step 4,
we check whether G[V −F ] consists of a periphery. If
G[V −F ] consists of a periphery, one vertex of BA−F
is added to F . This step is executed in O(n) time.
Thus, we have the following theorem.

Theorem 1 Given a normal Helly circular-arc graph
G, Algorithm 2 finds an MFVS of G in O(n+m) time.

4 Concluding Remarks

In this study, we proposed an algorithm that takes
O(n + m) time to find an MFVS on a normal
Helly circular-arc graph with n vertices and m edges.
Our algorithm employs algorithms to find maximal
cliques [29, 28] according to a method that can be
understood intuitively. The complexity of our algo-
rithm depends on the number of maximal cliques in a
normal Helly circular-arc graph. Reducing the com-
plexity of the algorithm and extending the results to
other graphs are issues to be considered in future re-
search.
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