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Abstract. In [9], J. Kim and M. W.Wong gave the heat kernel method for the tempered distributions
on the Heisenberg group. However, they used some propositions without the proofs. In this paper,
we will introduce the heat kernel method for the tempered distributions on the Heisenberg group
while making up for their deficiency and our recent results for the heat kernel method in [12] and
[13].
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1 Introduction

The Eucleadian space is the simplest and typ-
ical example of the Riemannian manifold. In
1987, the heat kernel method was given by T.
Matsuzawa in [11] to the space of the hyperfunc-
tions with a compact support on the Eucleadian
space and several mathematicians gave the heat
kernel method for the several functional spaces
on the Eucleadian space, for example, the space
of the Fourier hyperfunctions, the space of the
tempered distributions, the space of the distri-
butions of exponential growth, the dual space of
the Gel’fand-Shilov space and etc.

On the other hand, The Heisenberg group is
the simplest and typical example of the sub-
Riemannian manifold and the most nearly Eu-
cleadian space in the non commutative geometry.
Moreover it is the step 2 sub-Riemannian mani-
fold. The sub-Riemannian manifold may be in-
terpreted as a generalization of the Riemannian
manifold. The difference is that the motion for
the sub-Riemannian manifold is restricted to the
horizontal direction (for the Riemannian mani-
fold, we can measure the velocity and distance in
all directions). The Heisenberg group has been
investigated by many mathematicians. In 2006,
J. Kim and M. W. Wong gave the heat kernel
method for the tempered distributions on the
Heisenberg group. By this result, we can start
the investigation of the differential equations as-
sociated with the Heisenberg group using the
heat kernel method. They obtained the mag-
nificent result. However, they showed the heat
kernel method using some propositions without
the proofs.

In this paper, we will mainly introduce the
heat kernel method for the tempered distribu-

tions on the Heisenberg group while making up
for their deficiency and give our recent results
for the heat kernel method in [12] and [13].

2 The Heisenberg group Hd

First of all, we fix some notations. We use a
multi-index β ∈ Zd

+, namely, β = (β1, · · · , βd),
where βi ∈ Z and βi ≥ 0. So, for x ∈ Rd, xβ =

xβ1
1 · · ·xβd

d and ∂βx = ∂β1
x1 · · · ∂

βd
xd , where ∂

βj
xj =

(∂/∂xj)
βj . Moreover ∆ =

∑d
j=1 ∂

2/∂x2j .
We recall the definition and the properties of

the Heisenberg group. We refer to [1], [2], [3],
[6], [15] and [16]. Let g = (x, y, t) and g′ =
(x′, y′, t′) ∈ Rd × Rd × R = R2d+1. Then we
define the group law of R2d+1 by

(x, y, t)(x′, y′, t′)

= (x+ x′, y + y′, t+ t′ + 2(x′ · y − x · y′)),
(2.1)

where x · y =
∑d

j=1 xjyj . The group R2d+1 with
respect to the group law defined by (2.1) is called
the Heisenberg group and denoted by Hd. Its
identity element is e = (0, 0, 0) and the inverse of
the element (x, y, t) is (x, y, t)−1 = (−x,−y,−t).
The Heisenberg group Hd is a locally compact
Hausdorff group and its Haar measure is the
Lebesgue measure dxdydt. The left-invariant
vector fields in the Heisenberg group Hd as R2d+1

are represented by

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Xd+j =

∂

∂yj
− 2xj

∂

∂t

and

X2d+1 =
∂

∂t

for j = 1, 2, · · · , d and these make a basis for the
Lie algebra of Hd. Since their first brackets



[Xj , Xd+j ] = −4X2d+1,

the induced geometry is step 2. The sub-
Laplacian ∆Hd on Hd is defined by ∆Hd =∑2d

j=1X
2
j . We consider the heat operator

∂/∂s−∆Hd

on Hd × (0,∞).

Let λ > 0. Then we define the dilations δλ
by δλ(x, y, t) = (λx, λy, λ2t) for (x, y, t) ∈ Hd.
The homogeneous dimension Q of Hd is given
by Q = 2d + 2. Moreover, a function u from
Hd to C is called the Heisenberg-homogeneous
of degree k ∈ Z if u ◦ δλ = λku for λ > 0. Es-
pecially the Heisenberg-homogeneous of degree
of the distance function ρ defined by ρ(g) =

((x2 + y2)2 + t2)
1
4 for g = (x, y, t) ∈ Hd is one,

that is, ρ(λx, λy, λ2t) = λρ(x, y, t). The follow-
ing estimate also holds:

ρ(g′−1g) ≤ ρ(g) + ρ(g′).

The distance between two points g and g′ in Hd

is given by dK(g, g′) := ρ
(
g′−1g

)
. Especially,

we denote by dK(g) the distance from the origin.
This distance function ρ is called Korányi norm
and the distance dK is called Korányi distance.

The horizontal distribution is defined by Ig =
spang{X1, X2, · · · , X2d}. Then we shall con-
sider the non-degenerate, positive definite bilin-
ear form ⟨·, ·⟩ : Ig×Ig → R at any point g ∈ Hd

such that ⟨Xi, Xj⟩ = δi,j (i, j = 1, 2, · · · , 2d),
where δi,j means Kronecker’s delta. The length
l(γ) of the horizontal curve γ(t), t ∈ [a, b] is de-
fined by

l(γ) =

∫ b

a
⟨γ̇(t), γ̇(t)⟩ dt.

The Carnot-Carathéodry distance dCC(g, g
′) be-

tween two points g, g′ ∈ Hd is defined by the
infimum of the lengths of all smooth horizontal
curves joining g to g′ (see [1]). These distances
are bi-Lipschitz equivalent. Thus, there exists a
constant C1 > 1 such that

1

C1
dCC ≤ dK ≤ C1dCC

(for instance, see [10]).

Let f and h be suitable functions on Hd. Then
we define the convolution f ∗ h of f with h as
follows:

(f ∗ h)(g) =
∫
Hd

f(g′)h(g′
−1
g)dg′

for g, g′ ∈ Hd. The convolution on Hd is non-
commutative, in general.
Finally, we give the following uniquness theo-

rem.

Proposition 1 ([14]). Let Us(g) be a solution to
the Cauchy problem
∂

∂s
Us(g) = ∆HdUs(g),

U0(g) = 0

in Hd × (0, S) and be a continuous function in
Hd × [0, S] satisfying the condition: There exists
a constant C > 0 such that

|Us(g)| ≤ CeadK(g)2 (2.2)

for some constant a > 0. Then U ≡ 0.

3 The space S(Hd) and its dual
space S ′(Hd)

Let k ∈ N and a multi-index

α ∈ {0, 1, 2, · · · , 2d}k

= {0, 1, 2, · · · , 2d} × · · · × {0, 1, 2, · · · , 2d}︸ ︷︷ ︸
k

.

Then the functions (Xαφ)(g) are defined by

(Xαφ)(g) = (Xα1Xα2 · · ·Xαk
φ)(g)

for a function φ ∈ C∞(Hd), where X0 = I.
For example, the operator X1X0X2 = X1X2. If
|α| = 0, then Xαφ = φ.
We define the Schwartz class S(Hd) and the

space of tempered distributions S ′(Hd) on the
Heisenberg group as follows:

Definition 1. For any φ ∈ C∞(Hd), we say φ ∈
S(Hd) if the function φ satisfies the following
condition: For any N ∈ Z+, we have ∥φ∥N =∑

|α|+l≤N supg∈Hd(1 + dK(g)2)l|Xαφ(g)| <∞.

It is clear from the definition that the space
S(Hd) is topologically isomorphic of the space
S(R2d+1). Moreover, it is known that the
Schwartz class S(Hd) is a Fréchet space in [2].

Definition 2. We denote by S ′(Hd) the dual
space of the space S(Hd) and call it the space
of the tempered distributions in the Heisenberg
group. Thus, u ∈ S ′(Hd) if and only if u is a
linear functional from S(Hd) to C and satisfies
the following condition: There exist N ∈ Z+ and
a positive constant C such that



∣∣ ⟨u, φ⟩ ∣∣ ≤ C∥φ∥N

for any φ ∈ S(Hd).

By this definition, we can see that the space
S ′(Hd) is topologically isomorphic of the space
S ′(R2d+1).

Let f̌(g) = f(g−1) for g ∈ Hd. Then we de-
fine the convolution u ∗ φ of u ∈ S ′(Hd) with
φ ∈ S(Hd) by ⟨u ∗ φ,ψ⟩ = ⟨u, ψ ∗ φ̌⟩ for any
ψ ∈ S(Hd).

4 The heat kernel method for
the space S ′(Hd)

In [5] and [7], we can find the explicit form
of the heat kernel (the fundamental solutions)
Ps(g) of the heat operator ∂/∂s−∆Hd on Hd as
follows:

Ps(g) = Ps(x, y, t) =
(4πs)−(d+1)

∫ ∞

−∞
(2τ/sinh 2τ)d×

eiτt/2s−2(|x|2+|y|2)τ/(4s tanh 2τ)dτ, s > 0,

0, s ≤ 0.

The following properties of the heat kernel Ps(g)
hold:

Proposition 2 ([4]). Let Ps be the heat kernel
associated to the sub-Laplacian ∆Hd. Then the
following properties hold:

1. Ps(g) ≥ 0,

2.

∫
Hd

Ps(g)dg = 1,

3. Ps(g) = Ps(g
−1),

4. (∂/∂s−∆Hd)Ps(g) = 0,

5. lims→+0 Ps = δ in S ′(Hd),

6. Pr2s(rx, ry, r
2t) = r−QPs(x, y, t), r > 0,

(x, y, t) ∈ Hd.

Moreover the heat kernel Ps(g) has the following
estimate:

Proposition 3 ([8]). Let Ps(g) be the heat ker-
nel associated to the sub-Laplacian ∆Hd. Then
for any multi-index α ∈ {0, 1, 2, · · · , 2d}k and
for any m ∈ Z+, there exist positive constants a
and Cα,m such that

|(∂/∂s)mXαPs(g)|

≤ Cα,ms
−m−|α|/2−Q/2e−adK(g)2/s.

The following result was introduced in [9].
However there exists no proof. Here we give the
proof.

Proposition 4 ([9], [12]). The heat kernel Ps(g)
is in the space S(Hd) for s > 0. Moreover for
any φ ∈ S(Hd), the following property holds:

Us ≡ φ ∗ Ps → φ in S(Hd)

as s converges to +0.

Proof. It is sufficient to show that for any l ∈ N
and for any multi-index α ∈ {0, 1, 2, · · · , 2d}k we
have

lim
s→+0

sup
g∈Hd

(1 + dK(g)2)l|Xα(φ ∗ Ps)(g)−Xαφ(g)| = 0.

By the definition of the space S(Hd), Proposition
2, Proposition 3 and Peetre’s inequality,

(1+dK(g)2) ≤ 2(1+dK(g′)2)(1+(dK(g)−dK(g′))2),

we have

|Xα(Us(g)− φ(g))|
= |(φ ∗XαPs)(g)− (Xαφ)(g)|

=

∣∣∣∣∫
Hd

φ(g′)XαPs(g
′−1
g)dg′ −Xαφ(g)

∣∣∣∣
=

∣∣∣∣∫
Hd

φ(gg′
−1

)XαPs(g
′)dg′ −

∫
Hd

Xαφ(g)Ps(g
′)dg′

∣∣∣∣
≤

∫
Hd

|φ(gg′−1
)||XαPs(g

′)|dg′ +
∫
Hd

|Xαφ(g)||Ps(g
′)|dg′

≤
∫
Hd

Cl(1 + dK(gg′
−1

)2)−l × Cαs
− |α|

2
−d−1e

−adK (g′)2
s dg′

+

∫
Hd

Cl,α(1 + dK(g)2)−ls−d−1e−
adK (g′)2

s dg′

≤ C ′
l.α

∫
Hd

(1 + (dK(g)− dK(g′))2)−ls−
|α|
2
−d−1×

e
−adK (g′)2

s dg′ + Cl,α(1 + dK(g)2)−l

∫
Hd

s−d−1e−
adK (g′)2

s dg′

≤ C ′
l.α

∫
Hd

(2−1(1 + dK(g)2)(1 + dK(g′)2)−1)−l×

s−
|α|
2
−d−1e

−adK (g′)2
s dg′ + Cl,α(1 + dK(g)2)−l×∫

Hd

s−d−1e−
adK (g′)2

s dg′

≤ C ′′
l,α(1 + dK(g)2)−l×∫

Hd

s−
|α|
2
−d−1(1 + dK(g′)2)le−

adK (g′)2
s dg′

for some positive constants Cl, Cα, Cl,α, C
′
l,α and

C ′′
l,α. Moreover a is the positive constant in



Proposition 3. Hence we obtain the following
estimate,

(1 + dK(g)2)l|Xα(φ ∗ Ps)(g)−Xαφ(g))|

≤ C ′′
l,α

∫
Hd

s−
|α|
2
−d−1(1 + dK(g′)2)le−

adK (g′)2
s dg′.

(4.1)

Now we can see

lim
s→+0

s−
|α|
2
−d−1e−

adK (g′)2
3s = 0, a.e. g′ ∈ Hd

and

(1 + dK(g′)2)Ne−
adK (g′)2

3s < Ma,d,N

for 0 < s < 1. Moreover there exist a pos-
itive constant Ca,d and an integrable function
d∏

i=1

1

(1 + x′4i )(1 + y′4i )(1 + t′2)
such that

e−
adK (g′)2

3s ≤
Ca,d

(1 + dK(g′)4)22d

≤ Ca,d

d∏
i=1

1

(1 + x′4i )(1 + y′4i )(1 + t′2)
,

for a.e. g′ ∈ Hd. Therefore by the Lebesque
convergence theorem and (4.1), we can see

lim
s→+0

sup
g∈Hd

(1 + dK(g)2)l|Xα(Us(g)− φ(g))| = 0.

J. Kim and M. W. Wong obtained the follow-
ing characterization of the space S ′(Hd). We call
this characterization the heat kernel method for
S ′(Hd). The reader refers to [9] for the proof of
Theorem 1. As a remark, they use Proposition
1 and Proposition 4 in this paper without their
proofs in the proof of Theorem 1.

Theorem 1 ([9]). For u ∈ S ′(Hd), we put

Us(g) = (u ∗ Ps)(g)

for g ∈ Hd and s > 0. Then the function Us(g)
satisfies the following four conditions:

1. Us(g) ∈ C∞(Hd × (0,∞)),

2. (∂/∂s−∆Hd)Us(g) = 0, g ∈ Hd and s > 0,

3. for any φ ∈ S(Hd),

⟨u, φ⟩ = lim
s→+0

∫
Hd

Us(g)φ(g)dg

and

4. there exist µ, ν > 0 and a constant C > 0
such that

|Us(g)| ≤ Cs−µ(1 + ρ(g))ν , 0 < s < 1,

for g ∈ Hd.

Conversely every Us(g) ∈ C∞(Hd × (0,∞))
satisfying the conditions 2 and 4 can be expressed
in the form

Us(g) = (u ∗ Ps)(g)

with the unique element u ∈ S ′(Hd).

5 The heat kernel method for
the space of the tempered
distributions supported by a
regular closed set on Hd

Here we introduce our recent result in [13]. At
first, we give the definition of a regular closed set
on Hd.

Definition 3 ([13]). Let AHd be a closed subset
of the set Hd = R2d+1. If there exist κ > 0, ω >
0 and 0 < q ≤ 1 such that any g1 and g2 ∈ AHd

so that ρ(g−1
2 g1) ≤ κ are linked by a curve in AHd

whose length l satisfies l ≤ ωρ(g−1
2 g1)

q, then we
call AHd a regular in the Heisenberg group Hd.

We define the space S(AHd) as follows:

Definition 4 ([13]). Let AHd be a regular closed
set on Hd. For any φ ∈ C∞(Hd), we say φ ∈
S(AHd) if the function φ satisfies the following
condition: For any N ∈ Z+, we have

∥φ∥N,AHd
=

supg∈AHd
(1 + ρ(g))N

∑
|α|≤N |Xαφ(g)| <∞.

The following relationship between the spaces
S(Hd) and S(AHd) holds:

Proposition 5 ([13]). The space S(Hd) is dense
in the space S(AHd).

Proof. It is enough that the space D(Hd) is dense
in the space S(AHd). We choose Θj ∈ D(Hd) as
follows:

Θj(g) =

{
1, ρ(g) ≤ j

0, ρ(g) ≥ 2j

for j = 1, 2, · · · . Let f be in S(AHd). If we set
ψj = fΘj , the function ψj is in D(Hd). On the
other hand, we have



Xα{(1−Θj)f} =
∑

β≤α

(
α
β

)
Xβ(1−Θj)Xα−βf.

For ρ(g) ≤ j, we can see

Xβ(1−Θj) = 0. (5.1)

If the set AHd is compact, then by (5.1), we
can see that

limj→∞ ∥f − ψj∥N,AHd
= 0.

On the other hand, for unbounded sets AHd ,
we obtain the following estimate: For a sufficient
large j, we have

∥f − ψj∥N,AHd
= ∥(1−Θj)f∥N,AHd

≤ sup
g∈AHd\({ρ(g)≤j}∩AHd )

(1 + ρ(g))N×∑
|α|≤N

|Xα{(1−Θj)f}|

≤ sup
g∈AHd\({ρ(g)≤j}∩AHd )

(1 + ρ(g))N×∑
|α|≤N

|{Xα(1−Θj)}f + · · ·

+Xζ(1−Θj)Xηf + · · ·+ (1−Θj)Xαf |. (5.2)

Since f ∈ S(AHd), we can see that

(1 + ρ(g))N |Xηf | → 0

as j → +∞. By (5.2), for any f ∈ S(AHd), there
exists the sequence {ψj}j∈N ⊂ D(Hd) such that

limj→+∞ ∥f − ψj∥N,AHd
= 0.

Therefore we can see that the space D(Hd) is
dense in the space S(AHd).

Definition 5 ([13]). We denote by S(AHd)′ the
dual space of the space S(AHd). Thus, u ∈
S(AHd)′ if and only if u is a linear functional from
S(AHd) to C and satisfies the following condition:
There exist N ∈ Z+ and a positive constant C
such that ∣∣ ⟨u, φ⟩ ∣∣ ≤ C∥φ∥N,AHd

for any φ ∈ S(AHd).

Here we denote by S ′
AHd

the space of the tem-

pered distributions u on Hd satisfying the follow-
ing condition: For any φ ∈ S(Hd), there exists a
constant C > 0 such that

| ⟨u, φ⟩ | ≤ C∥φ∥N,AHd
(5.3)

for some N ∈ Z+. We call the space S ′
AHd

as the

space of the tempered distributions supported by

AHd in Hd. Then by Proposition 5, (5.3) means
that u has continuous on S ′(Hd) with respect
to the relative topology from S(AHd). Hence u
has a unique linear continuous extension uAHd

on S(AHd). This means that any tempered dis-
tributions with supported by AHd in Hd can be
identified with an element of S(AHd)′. Thus, we
identify the space S ′

AHd
with the space S(AHd)′.

We have the following characterization for
S ′(Ad

H).

Theorem 2 ([13]). Let A be a regular closed
set on Hd. For any u in S(AHd)′, let Us(g) =⟨
u, Ps(·−1g)

⟩
. Then Us(g) satisfies the following

conditions:

1. Us(g) ∈ C∞(Hd × (0,∞)),

2. (∂/∂s−∆Hd)Us(g) = 0, g ∈ Hd and s > 0,

3. for any φ ∈ D(Hd),

⟨u, φ⟩ = lims→+0

∫
Hd

Us(g)φ(g)dg

and

4. there exist µ, ν > 0 and a constant C > 0
and a such that

|Us(g)| ≤ Cs−µ(1 + ρ(g))νe−aρ(g,AHd )
2/2s

for 0 < s < 1 and g ∈ Hd, where

ρ(g,AHd) = infg′∈AHd
ρ
(
g′−1g

)
.

Conversely every Us(g) ∈ C∞(Hd × (0,∞))
satisfying the conditions 2 and 4 can be expressed
in the form

Us(g) = (u ∗ Ps)(g)

with the unique element u ∈ S(AHd)′.

6 Conclusion

In this summary, we have introduced the heat
kernel method for the tempered distributions on
the Heisenberg group making up for their de-
ficiency in [9]. As far the heat kernel method
on the Heisenberg group, its investigation has
started recently. We will adopt the heat kernel
method to the P.D.E. on the Heisenberg group
in the future.

Finally, we introduce the Schwartz kernel the-
orems without the proofs as an application of the
heat kernel method as follows:



Theorem 3 ([12]). Let k be a continuous linear
operator from S(Hd2) to S ′(Hd1). Then there
exists T in S ′(Hd1 ×Hd2) such that

⟨kψ, φ⟩ = ⟨T, φ⊗ ψ⟩ ,

where φ is in S(Hd1) and ψ is in S(Hd2).

Theorem 4 ([13]). Let the sets AHd1 and AHd2

be regular closed sets on Hd1 and Hd2 respec-
tively and k be a continuous linear operator from
S(AHd2 ) to S(AHd1 )

′. Then there exists T in
S(AHd1 ×AHd2 )

′ such that

⟨kψ, φ⟩ = ⟨T, φ⊗ ψ⟩ ,

where φ is in S(AHd1 ) and ψ is in S(AHd2 ).
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