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Abstract

We introduce Negative dimensional integral technique devised by I.G.Halliday and R.M.Ricotta.
And we extend the idea to all dimensions using complex variable integral and negative power
differentiation. Furthermore we propose a new formula to calculate Feynman integrals. We
apply it to the calculations of bubble Feynman integral.
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1 Introduction

Until now, many kinds of ways to calcu-
late Feynman propagator integrals were dis-
covered. Dimensional regularization method,
founded by G.’tHooft and M.Veltman, was the
most successful one in Quantum field theory.[2]
In 1987, I.G.Halliday and R.M.Ricotta conceived
an idea known as negative dimensional integral
method.[3] It was advanced by C.Anastasiou and
others, A.T.Suzuki, A.G.M.Schmit as well as
other researchers.[1][4][5] When we calculated
Feynman integral propagators, we proposed a
new parameter transformation and a new reg-
ularization, the so-called Hypersurface regular-
ization.[6][7][9] In this paper we extend the idea
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of negative dimension to all dimensions. Using
our idea and our calculation method of Feyn-
man propagator integrals, we calculate bubble
one loop Feynman integral. We show that the re-
sults perfectly agree with the results of the stan-
dard calculation. In Sec. 2 we introduce neg-
ative dimensional integral method and explain
our idea as the extension of this method. In
Sec. 3 we apply our idea to bubble Feynman di-
agram integral calculation with consideration of
C.Anastasiou, E.W.N.Glover and C.Oleari.[1] In
Sec. 4 we discuss the advantages and the doubt-
ful points concerning our new idea and the new
formula, and explain prospects for the future as
concluding remarks.

2 Negative dimensional integral technique and its extension

First, we review negative dimensional integral technique, discovered by Halliday and Ricotta,
and try to extend it. Furthermore we will make a new formula to calculate Feynman propagator
integrals and verify that its formula is exactly true.

Let’s consider the following integral,
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We can prove this formula by utilizing the d-dimensional hyper-spherical coordinate integral as
follows,
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Now we consider the integral [(p?)®d?p in the case of f = 0. The result becomes 0 because I'(0)
is infinity. In order to avoid this difficulty we have to take o + % = 0. Accordingly, because «
is positive, the dimension d must be negative. This is an idea of negative dimension, proposed
by Halliday and Ricotta.[3] This idea means an analytic continuation to negative dimension as
Feynman propagator integrals are analytic concerning the dimension.

We show the concrete calculation as follows,
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where we used the formula,[8]
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The negative dimensional technique became a powerful tool. When we have an integral, such as
the above type Eq. (3), it is sufficient to replace the integral by (—1)“7T%F(oz + 1)5a+%’0.

Next, we examine another aspect of negative dimensional technique. This time, we introduce a
complex parameter variable z and parametrize the above integral as the contour integral along a
small circle C' around the origin z = 0 on the complex plane. Because exp(—p?z) does not have

any singularities and is holomorphic at z = 0, the following equation holds
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applying Cauchy’s integral theorem concerning the function with a4 1 order pole at z = 0. We can
understand that negative dimensional integral method is consistent with the concept that a single
pole only is effective on the integral calculation of the complex variable parameter z.
Subsequently we have to extend negative dimensional method to all dimensional one by considering
that the following equation
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holds.

In this extension we adopted the concept that —n times differentiation means n times integra-
tion.[10]

Henceforth we postulate the following items:

a) we can exchange the order of integration of the variable P and the parameter complex variable
g g
zZ.

(b) The single pole only is effective for the contour complex integral after expanding the integrand
to Taylor expansion or a multinomial one.

(c) We interpret that negative n times differentiation means n times integration.

(d) We can do analytic continuation of the Feynman propagator integral to all dimensions from
positive dimension until negative dimension.

(e) The sign and the domain of the indexes in the expansions can be decided by the mathematical
constraints and the physical constraints.

We try to calculate the following integral, utilizing our new formula, in order to examine whether
our new formula holds or not. We have the following integral from Eq. (7) in Appendix C-2 of Ref.

[11],
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We diagonalize the momentum k and shift it as follows k=k— p. Then the process of the calculation
can be shown as

1 . 1
I = /ddk :/ddk _
(m? + 2kp — k2) (—k2 + p? + m2)e

~(—a)! dz - —a)! dz [m\4%
= /ddk(zm) ?{C a exp (—k* + p* + m?)z = ( ) %C poes (;)2exp (p* +m?)z.

Finally we can obtain the result as follows,
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This final result is consistent with one of the usual calculations except for a factor (—1)% In the
calculation of the final term, we utilized the formula concerning I'-function;
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3 The application to massive bubble Feynman diagram calculation

Now we consider application of our idea and the new formula to the calculation of massive bubble
Feynman diagram as indicated in Fig.1. This one loop integral in d-dimensional Minkowski space
is given
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Fig.1
where the external momenta are kq,ks = —kq, all incoming, and the masses of propagators are M,

Ms. We omit the infinitesimal quantity ie for short. We install the power indexes vy, in the
denominator to generalize it as possible as we can,
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Of course we can take v; = 1, 5 = 1 if we need, after we have calculated the integral. We transform
the momentum k in Minkowski space to the momentum k in Euclidean space and apply our formula
Eq. (6) to Eq. (12).

That is,
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We diagonalize the momentum k and sift the momentum from % to k = k + %%1 and exchange

the integral order of z; and k. After that we calculate the integral of k first.
Namely we have
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Next we carry out Taylor expansion and multinomial expansions in the integrand as follows,
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Finally we perform the complex variable 21, zo integrations along the contours C,Cs around the
small circles at the centers of the origins z; = 0,29 = 0, respectively. We can get the following
result because only the single poles are effective, from Cauchy integral theorem.
That is,
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Hence we can obtain the constraint conditions as follows,
d
ni+ng+n3=mn, ni+ng+q =—vi, N1 +ng+q=—rz, q1+g+n = 5 (17)

Because we have n = ni+ns+nsg = d 5 —V1—Vo = constant, the undetermined indexes are the five ones
of ni,n9,n3,q1,qs2 . Therefore we can solve the four simultaneous equations concerning any two in-
dexes out of the five ones. The combinations are (n1,n2), (n2,ns), (n1,n3), (n1,q1), (n1,q2), (n2,q1),
(n3,q2), (q1,q2) - The combinations (n2, q1), (n3, ¢2) cannot be determined because they are not lin-
ear independent of each other.

We enumerate the concrete procedures and results of the computation as (i) (ii) (iii) (iv) (v) (vi) (vii) (viii).

(i) the case {ny,na}

Solving Eq. (17) on ny,n9, we can obtain the following relations;
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Substituting these relations to Eq. (16) yields
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where we made use of the formula (a+n)! = T'(14+a)(14+a), and (a)_, = % and Fy(a,a’;b,c;z,y)
is a hyper-geometric function with two variables, known as Appell function, i.e.Fy(a,b;c,c';z,y) =
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> Wl‘my" (|z]2 4+ |y|2z < 1).[8] In the last line, the relation lf((mgll:g_m)) = ((_11))n has

m,n
been used. In the same way, we can calculate the rest seven cases. The results are enumerated
below.

(ii) the case {ng,n3}
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(iii) the case {n1,n3}
The result:
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(vi) the case {no,q1}
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Table-1

positive | negative positive | negative
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Furthermore, we can classify the results of the calculation to three groups by considering that
Appell function Fy(a,b;c,c';z,y) is convergent only when /|z] + /]y < 1 holds.

The classification of If} becomes as follows,

(a) I (i vos k3, M2, M3) = 137" 4 pfre0d o frnseed y plosed (27)
whem\/ﬁl2 + \/EQ2 < \/E
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when \/k? + \/@ < \/ﬁf

(@) 157 = P sk, ME M) = 1) 1) (29)

when \/k? + \/ﬁf < \/@ . Next we introduce an amazing idea of
the classification by C.Anastasiou, et al.[1] It is supposed that the indexes n;,q;(i = 1,2,3,5 = 1,2)
are very large and so v;(i = 1,2), % can be negligible. In this case the constraint conditions become
as follows,

ni+ng+n3=0 (a), ni+n2+q =0 (b), ni+n3+¢=0 (c), ni+q+¢q=0 (d) (30)

From Equation (a) when (n1,n2),(n2,n3),(n1,n3) respectively are positive, ng,n; and ny are neg-
ative. In the same way as the case of Equation (a) we have ; from (b) (ni,n2) > 0,(n1,q1) >
0,(n1,q1) >0 = ¢ < 0,n2 < 0,n7 <0, from Equation (c) (ny,n3) > 0, (n1,q2) > 0,(n3,q3) >
0 = ¢ < 0,n3 < 0,n; <0, from Equation (d) (n1,q1) > 0,(n1,q2) > 0,(q1,q2) > 0 = ¢ <



0,q1 < 0,n1 < 0, as described in Table-1. Considering that the negative indexes are virtual ones

and classifying I(EQ} by focusing on these negative indexes ni,ns, n3, we can get the relations of the

same groups as Eqs. (27),(28) and (29).

Summarizing these situations, we have If} = Iém’n?’} + Iém"h} + Iin?”(m} + Ié‘h"h} for the negative

ni, If} = I[Em’m} + Ii”l"h} for the negative mo, and If} = I[Em’M} + Iim”“} for the negative
ng. It is surprising that these results are perfectly consistent with the results in the case of the
classification by the convergent condition of Appell function Fy(a,b;c,c’;z,y).

4 Concluding Remarks

In this paper we introduced negative dimen-
sional technique and extended this idea from
positive dimension until negative dimension us-
ing the concept of negative power differentiation
in mathematics.[10] We proposed a new idea that
we can do analytic continuation to all dimensions
from negative until positive, and made a new for-
mula to calculate Feynman propagators. Utiliz-
ing this idea and the new formula we calculated
Feynman massive one loop bubble diagram. I
think our idea and the new formula would be
true considering the fact that results of the cal-
culations are consistent with ones of the usual
standard calculations.

The advantages of our idea and the calculation
method are

(i) The calculations are simple and do not
have any approximations.

(il) We can express the results by hyper-
geometric series, which is useful to calcu-
late numerically.

(iii) We can decide the domains of the power
indexes in the expansions from the phys-
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ical and mathematical constraints. From
this fact we can draw out new physical and
mathematical aspects of Feynman propa-
gator.

The disadvantages are

(i) Cauchy’s integral theorem is unstable be-
cause we made a new formula, exploiting
the concept that negative power differenti-
ation means positive power integration .

(i) The domains of the indexes in Taylor ex-

pansion and multinomial expansions are

slightly unclear.

(iii) It is indefinite whether the exchange of the

integral order concerning momentum & and

parameter complex variables z; is possible
or not.

Hereafter we have to verify that we can obtain
accurate results by applying our idea to the cal-
culations of more complex propagator diagrams.
Furthermore we need to more scrupulously es-
tablish the domain of indexes in Taylor series
expansion and multinomial expansions.
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