
Parallel Algorithm for Constructing a Spanning Tree

on a Certain Class of Circle Trapezoid Graphs

Hirotoshi HONMA1 Yoko NAKAJIMA1

Abstract: Given a simple graph G with n vertices and m edges. The spanning

tree problem is to find a spanning tree for a given graph G. This problem has

many applications, such as electric power systems, computer network design and

circuit analysis. For a simple graph, the spanning tree problem can be solved

in O(log n) time with O(n +m) processors on the CRCW PRAM. In general, it

is known that more efficient parallel algorithms can be developed by restricting

classes of graphs. In this paper, we shall propose a parallel algorithm which run

O(log n) time with O(n/ log n) processors on the EREW PRAM for constructing

on certain class of circle trapezoid graphs.
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1 Introduction

Given a simple connected graph G with n vertices.
The spanning tree problem is to find a tree that con-
nects all the vertices of G. Generally, there exist a
number of different spanning trees in a connected
graph. Let T be a tree with n vertices. Then the
following statements are equivalent [1]:

(i) T contains no cycles, and has n− 1 edges,
(ii) T is connected, and has n− 1 edges,
(iii) T is connected, and each edge is a bridge,
(iv) any two vertices of T are connected by exactly

one path,
(v) T contains no cycles, but the addition of any new

edge creates exactly one cycle.

The spanning tree problem have applications, such
as electric power systems, computer network design
and circuit analysis [1]. A spanning tree can be found
in O(n + m) time using, for example, the depth-
first search or breadth-first search. In recent years, a
large number of studies have been made to parallelize
known sequential algorithms. For simple graphs,
Chin et al. presented that the spanning forest can be
found in O(log2 n) time using O(n2/ log2 n) proces-
sors [2]. Moreover, for a connected graph, Klein and
Stein demonstrated that a spanning tree can be found
in O(log n) time with O(n + m) processors on the
CRCW (Concurrent Read Concurrent Write) PRAM
(Parallel Random Access Machine) [3].
In general, it is known that more efficient algo-

rithms can be developed by restricting classes of
graphs. For instance, Wang et al. proposed an op-
timal parallel algorithm for constructing a spanning
tree on permutation graphs that runs in O(log n) time
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using O(n/ logn) processors on the EREW (Exclu-
sive Read Exclusive Write) PRAM [4]. Wang et al.
proposed optimal parallel algorithms for some prob-
lems including the spanning tree problem on inter-
val graphs that can be executed in O(log n) time
with O(n/ log n) processors on the EREW PRAM [5].
Bera et al. presented an optimal parallel algorithms
for finding a spanning tree on trapezoid graphs that
takes in O(log n) time using O(n/ log n) processors on
the EREW PRAM [6]. In addition, Honma et al. de-
veloped parallel algorithms for finding a spanning tree
on circular permutation graphs [7] and circular trape-
zoid graphs [8]. Both of them take in O(log n) time
using O(n/ log n) processors on the EREW PRAM.

Felsner et al. first introduced circle trapezoid
graphs [9]. They also provided an O(n2) time al-
gorithm for solving maximum independent set prob-
lem and O(n2 log n) time algorithm for solving max-
imum clique problem. Recently, Lin showed that
circle trapezoid graphs are superclasses of trapezoid
graphs [10].

In this study, we propose a parallel algorithm for
spanning tree problem on a certain class of circle
trapezoid graphs. It can run in O(log n) time with
O(n/ logn) processors on the EREW PRAM.

2 Preliminaries

2.1 Circle trapezoid model and graph

We first illustrate the circle trapezoid model before
defining the circle trapezoid graph. There is a unit
circle C such that the consecutive integer i, 1 ≤ i ≤
4n are assigned clockwise on the circumference (n is
the number of circle trapezoids). Consider noninter-
secting two arcs A′ = [aibi] and A′′ = [cidi] along
the circumference of C. The point bi (resp., di) is



the last point encountered when traversing A′ (resp.,
A′′) clockwise. A circle trapezoid CTi is the region in
a circle C that lies between two non-crossing chords
⟨aidi⟩ and ⟨bici⟩. Without loss of generality, each cir-
cle trapezoid CTi has four corner points ai, bi, ci, di,
and all corner points are distinct. We assume that cir-
cle trapezoids are labeled in increasing order of their
corner points ai’s, i.e., CTi < CTj if ai < aj . The
geometric representation described above is called the
circle trapezoid model (CTM). Figure 1-(a) illustrates
an example of CTM M with eight circle trapezoids.
The circle trapezoid with ai > di is called feedback
circle trapezoid. Note that there exist two feedback
circle trapezoids (CT7, CT8) in CTM M .

We next introduce the circle trapezoid graphs. An
undirected graph G is a circle trapezoid graph (CTG)
if it can be represented by the following CTM; each
vertex of the graph corresponds to a circle trapezoid
in CTM, and two vertices are adjacent in G if and
only if their circle trapezoids intersect [9]. Figure 1-
(b) illustrates a CTG G corresponding to CTM M
shown in (a). Table 1 shows the details of CTM M
of Figure 1.

Table 1: Details of circle trapezoid model M

i 1 2 3 4 5 6 7 8
ai 1 6 7 11 18 21 23 25
bi 3 9 10 12 20 22 24 26
ci 5 13 14 16 28 27 31 32
di 8 19 15 17 29 30 4 2

2.2 Extended circle trapezoid model

In the following, we introduce the extended circle
trapezoid model (ECTM) constructed from a CTM
for making the problem easier. We first cut CTM
at point 1 on the circumference and next unroll onto
the real horizontal line. Each circle trapezoid CTi =
[ai, bi, ci, di] in CTM is also changed to a pair of line
segment Ii = ([ai, di], [bi, di]) called interval pair by
executing the above process. Here, feedback circle
trapezoid CTi = [ai, bi, ci, di] in CTM is changed to
interval pair Ii = ([ai, di + 4n], [bi + 4n, di + 4n]) for
ai > bi, ci, di. Moreover, copies Ii−n of Ii are cre-
ated by shifting 4n to the left respectively, for each
Ii, 1 ≤ i ≤ n. Note that both interval pairs Ii and
Ii−n in ECTM are corresponding to CTi in CTM.

The following Algorithm 1 constructs an ECTM
from a CTM. Figure 2 shows the ECTM EM con-
structed from the CTM M illustrated in Fig. 1. Ta-
ble 2 shows the details of ECTM EM of Figure 2.
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Figure 1: Circle trapezoid model and graph

2.3 Restricted circle trapezoid model
and graph

In this study, we focus and treat a certain class of
circle trapezoid graphs. Graph G is a CTG corre-
sponding to a CTM M and an ECTM EM is con-
structed from M by executing Algorithm 1. We con-
sider CTM M such that the ECTM EM constructed
from M satisfies that ci < dj for two interval pairs
Ii and Ij (i < j) in EM . The CTM M is defined as
restricted circle trapezoid model (rCTM). The graph
corresponding to the rCTM is restricted circle trape-
zoid graph (rCTG). In this study, we will develop
a parallel algorithm for spanning tree problem on
rCTGs. The Figure 1 is also an example of rCTM
and rCTG because ci < dj for Ii and Ij (i < j) in
ECTM EM .

2.4 Other definitions

Here, some notations that form the basis of our algo-
rithm are defined as follows.

The function nor(i) normalizes the interval pair
number i in ECTM within the range 1 to n, which
is expressed as
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Figure 2: Extended circle trapezoid model EM

Table 2: Details of extended circle trapezoid model EM

i -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
ai -31 -26 -25 -21 -14 -11 -9 -7 1 6 7 11 18 21 23 25
bi -29 -23 -22 -20 -12 -10 -8 -6 3 9 10 12 20 22 24 26
ci -27 -19 -18 -16 -4 -5 -1 0 5 13 14 16 28 27 31 32
di -24 -13 -17 -15 -3 -2 4 2 8 19 15 17 29 30 36 34

Construct Extended Model (CEM)

Input: Corner points [ai, bi, ci, di] of CTi in CTM.

for each non feedback circle trapezoid CTi in pardo
Create a interval pair Ii = ([ai, di], [bi, di]);

end
for each feedback circle trapezoid CTi in pardo

for each bi, ci, di < ai do
Create a interval pair
Ii = ([ai, di + 4n], [bi + 4n, di + 4n]);

end

end
for 1 ≤ i ≤ n in pardo

Create copies Ii−n by shifting 4n to the left for Ii
end
;

nor(i) =

{
i if i ≥ 1,
i+ n if i < 1.

For the example shown in Fig. 2, for i = 4 and i = −5,
we have nor(4) = 4 and v(−5) = 3, respectively.
The function vd(k) computes a vertex number i sat-

isfying di = k for a given number k on ECTM . For
the example shown in Fig. 2, for k = 29 and k = −13,
we have vd(29) = 5 and vd(−13) = −6 by d5 = 29 and
d−6 = −13, respectively. Moreover, we use nvd(k) in-
stead of nor(vd(k)) for simplicity. For the example
shown in Fig. 2, for k = 29 and k = −13, we have
nvd(29) = 5 and nvd(−13) = 2 by vd(29) = 5 and
vd(−13) = −6, respectively.
We next define ldi = max{d−n+1, d−n+2, . . . , di},

for −n + 1 ≤ i ≤ n − 1, in EMr. The details of ldi,
vd(di), and nvd(di) are shown in Table 3.
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Figure 3: Examples of disjoint and contain

3 Property of circle trapezoid
graph

We describe some properties on CTGs which are use-
ful for constructing the algorithm for spanning tree
problem on rCTGs.

For two interval pairs Ii and Ij(i < j) in ECTM,
we say Ii and Ij are disjoint if di < aj . Moreover,
we say Ii contain Ij if bi < aj and dj < ci. Figure 3
shows examples of the cases of disjoint and contain.
The following Lemma 1 has been described in [9].

Lemma 1 Let CTi and CTj (i < j) be non-feedback
circle trapezoids in CTM M . Moreover, ECTM EM
is constructed from M . CTi and CTj intersect if Ii
and Ij are not disjoint and Ii does not contain Ij in
EM .

The following Lemma 2 generalizes Lemma 1. This
is very useful to find the edges on CTG.



Table 3: Details of extended circle trapezoid model EM

i -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
di -24 -13 -17 -15 -3 -2 4 2 8 19 15 17 29 30 36 34
ldi -24 -13 -13 -13 -3 -2 4 4 8 19 19 19 29 30 36 -

vd(ldi) -7 -6 -6 -6 -3 -2 -1 -1 1 2 2 2 5 6 7 -
nvd(ldi) 1 2 2 2 5 6 7 7 1 2 2 2 5 6 7 -

Lemma 2 G is a CTG corresponding to a CTM M ,
and ECTM EM is constructed from M . For two in-
terval pairs Ii, Ij (i < j), an edge (nor(i), nor(j)) is
in G if and only if at least one of the following con-
ditions satisfies in EM ;

(1) bi > aj,

(2) di > aj and ci < dj.

(Proof) By Lemma 1, for two non-feedback circle
trapezoids CTi and CTj do not intersect if and only
if (di < aj) or (bi < aj and ci > dj) in EM .
By the contra position, for two non-feedback cir-
cle trapezoids CTi and CTj intersect if and only if
(di > aj) and (bi > aj or ci < dj) in EM . Here,
(di > aj) and (bi > aj or ci > dj) is logically equal
to (di > aj and bi > aj) or (di > aj and ci < dj).
For the condition (di > aj) and (bi > aj), we have

bi > aj whenever di > aj . Thus, (nor(i),nor(j)) is an
edge of CTG G if (bi > aj) or (di > aj and ci < dj)
for two interval pairs Ii and Ij(i < j) in EM . 2

We obtain the following Lemma 3 for restricted cir-
cle trapezoid model Mr and graph Gr.

Lemma 3 Gr is a rCTG corresponding to a rCTM
Mr, and EMr is an extended circle trapezoid model
constructed from Mr. An edge (nor(i),nor(j)) is in
Gr if and only if di > aj for i < j satisfies in the
EMr.

(Proof) By Lemma 2, if either of conditions (1) (bi >
aj) or (2) (di > aj and ci < dj) for two interval pairs
Ii and Ij(i < j) in EMr, an edge (nor(i), nor(j)) is
in Gr. By definition of rCTG Gr, we have ci < dj
in EMr. Hence, condition (2) satisfies when di > aj
holds. Moreover, condition (1) bi > aj satisfies if di >
aj holds because ai < bi < ci < di by the definition
of interval pair. Therefore an edge (nor(i), nor(j)) is
in Gr if and only if di > aj for i < j satisfies in the
EMr. 2

In Lemma 2, we have to test if bi > aj or (di >
aj and ci < dj) in EM to check whether (i, j) is
an edge of normal CTG G. On the other hand, by
Lemma 3, we only need to check di > aj holds for
EMr to determine whether an edge (i, j) is in rCTG
Gr.

The following Lemma 4 is core of solving this prob-
lem. An efficient algorithm can be constructed by
using the following lemma.

Lemma 4 Gr is a rCTG corresponding to a rCTM
Mr, and EMr is an extended circle trapezoid model
constructed from Mr. For 1 ≤ i ≤ n, an edge
(nvd(ldi−1), i) is in Gr if ldi−1 > ai satisfies in the
EMr.

(Proof) By the definition, ldi−1 =
max{d−n+1, d−n+2, . . . , di−1}. Thus, we have
vd(ldi−1) ≤ i − 1. By Lemma 3, an edge
(nor(i),nor(j)) is in Gr if and only if di > aj
for i < j. Therefore, an edge (nvd(ldi−1), i) is in Gr

if ldi−1 > ai satisfies in the EMr. 2

4 Parallel Algorithm

In this section, we propose an algorithm for construct-
ing a spanning tree of a connected rCTG Gr. We
assume that all trapezoids in the rCTM have been
sorted by corner point a in ascending order, that is,
Table 1 is given as an input of our algorithm. Algo-
rithm CST returns a spanning tree if a given graph Gr

is connected. Instead of using a sophisticated tech-
nique, we propose simple parallel algorithms using
only the parallel prefix computation [11] and Brent’s
scheduling principle [12].

Lemma 5 After executing Step 3 of Algorithm CST,
graph T is a spanning tree of CTG Gr.

(Proof) Step 1 is a process for initialization. T
is empty set and all cki are set to ‘0’. For
all −n + 1 ≤ i ≤ n − 1, compute ldi :=
max{d−n+1, d−n+ 2, . . . , di} using parallel prefix
computation [11].

In Step 2, we set cki = 1, 1 ≤ i ≤ n, if ldi−1 > ai.
In addition, we compute s := max{ nvd(ldi−1) |
nvd(ldi−1) > i, cki = 1}. By Lemma 4, an edge
(nvd(ldi−1), i) is in Gr if ldi−1 > ai. Thus, a ver-
tex i that cki = 1 can have least one edge from i
to other vertex nvd(ldi−1). Vertex s is the largest
nvd(ldi−1) satisfying nvd(ldi−1) > i. For the exam-
ple shown in Fig. 4, we set cki = 1 because ldi−1 > ai,
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Figure 4: Example of constructed spanning tree

for 1 ≤ i ≤ n. For the only case of i = 1, we have
nvd(ldi−1) > i then s = nvd(ld0) = 7.

We consider that T is added an edge form i to
vd(ldi−1) smaller for i, 1 ≤ i ≤ n. By definitions
of vd and ld, if vd(ldi−1) corresponds a copy of a non-
feedback circle trapezoid, we have nvd(ldi−1) < i.
On the other hand, if vd(ldi−1) corresponds a copy
of a feedback circle trapezoid, we have nvd(ldi−1) >
i. In the case of

∑n
i=1 cki = n, T constructed in

above way is connected graph that has n vertices.
Thus, T is not a tree that have exactly one cycle
C. There exist some edge (nvd(ldi−1), i) in C such
that nvd(ldi−1) is feedback circle trapezoid, because
a given Gr is connected. In Step 2, we obtained
s = max{ nvd(ldi−1) | nvd(ldi−1) > i, cki = 1}. In
not adding (nvd(lds−1), s) to T , we can remove a cycle
C.

In Step 3, in the case of
∑n

i=1 cki = n, we add
an edge (nvd(ldi−1), i) to T for vertex i, 1 ≤ i ≤ n,
i ̸= s. T is connected with n−1 vertices, that is, T is a
tree. In Step 3, we consider the case of

∑n
i=1 cki ̸= n.

This implies
∑n

i=1 cki = n − 1. If
∑n

i=1 cki < n − 1,
this means that a given Gr is disconnected, which is
a contradiction to our hypothesis. Therefore, in the
case of

∑n
i=1 cki = n, we add an edge (nvd(ldi−1), i)

to T for vertex i, 1 ≤ i ≤ n, cki = 1. T is connected
with n− 1 vertices, that is, T is a tree.

Therefore, after executing Step 3 of Algo-
rithm CST, graph T is a spanning tree of CTG Gr.
2

Figure 4 shows a spanning tree T constructed from
CTG Gr by executing Algorithm CST.

In the following, we analyze the complexity of Al-
gorithm CST.

In Step 1, an ECTM is constructed from a CTM
in O(1) time using O(n) processors, which can be

implemented in O(log n) time using O(n/ log n) pro-
cessors by applying Brent’s scheduling principle [12].
Moreover, all rdi are obtained in O(log n) time us-
ing O(n/ log n) processors by applying parallel prefix
computation [11]. In Step 2, cki and s are computed
in O(log n) time using O(n/ log n) processors by ap-
plying Brent’s scheduling principle. Step 3 can also
be implemented in O(log n) time using O(n/ log n)
processors by applying Brent’s scheduling principle.
In addition, Algorithm CST can be executed on an
EREW PRAM because neither concurrent read nor
concurrent write are necessary. Thus, we have the
subsequent theorem.

Theorem 1 Algorithm CST constructs a spanning
tree of a restricted circle trapezoid graph in O(log n)
time using O(n/ log n) processors on EREW PRAM.
2

5 Concluding Remarks

In this paper, we presented a parallel algorithm to
solve the spanning tree problem on a restricted circle
trapezoid graph. This algorithm can be implemented
in O(log n) time with O(n/ log n) processors on an
EREW PRAM computation model using only par-
allel prefix computation [11] and Brent’s scheduling
principle [12] without using a sophisticated technique.
Solutions to the spanning problem have applications
in electrical power provision, computer network de-
sign, circuit analysis, among others. For this reason,
we think this paper is also worthy from both a theo-
retical and algorithmic point of view. In the future,
we will continue this research by extending the results
to other classes of graphs.



Construct Spanning Tree (CST)

Input: Corner points [ai, bi, ci, di] of Ii in Mr.
Output: Spanning tree T of G.

(Step 1) /* Initialization */
Construct EM from Mr using Algorithm CEM;
T := ∅;
for 1 ≤ i ≤ n in pardo cki := 0 ;
for −n+ 1 ≤ i ≤ n− 1 in pardo

ldi := max{d−n+1, d−n+ 2, . . . , di} ;
end

(Step 2) /* Set Flag cki and Compute s */
for 1 ≤ i ≤ n in pardo

if ldi−1 > ai then cki := 1 ;
end
s := max{ nvd(ldi−1) | nvd(ldi−1) > i, cki = 1};

(Step 3) /* Construction Spanning Tree */
if

∑n
i=1 cki = n then

for 1 ≤ i ≤ n, i ̸= s in pardo
T := T ∪ edge(nvd(ldi−1), i) ;

end
return T ;

else
for 1 ≤ i ≤ n, cki = 0 in pardo

T := T ∪ edge(nvd(ldi−1), i) ;
end
return T ;

end
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