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Abstract

In the previous paper, we extended the idea of negative dimensional technique devised by
I.G.Halliday and R.M.Ricotta to all dimensions using complex variable integral and fractional
calculus, and showed that the single poles only are effective when we calculate Feynman inte-
grals. In this paper we calculate more complex Feynman integrals rather than bubble Feynman
diagram, and demonstrate that our new method of the calculations is true.
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1 Introduction

The weak bosons Z° W were discovered in
1983 using SPS (the super proton synchrotron)
at CERN and it proved that Weinberg-Salam
theory is exactly true. Hence Electromagnetic
interaction and weak interaction were unified. In
2013 the Higgs bosons were detected at CERN
using LHC (the large hadron collider). Recently
amazing discoveries have been found at CERN.
These facts provide us with information of an ap-
proach to the clarification of the origin of mass
and the structure of the universe. When we want
to compare the theories in gauge field theory or
quantum chromodynamics to experimental data,
we have to calculate Feynman propagator inte-
grals in most cases. Dimensional regularization
method founded by G.’tHooft and M.Veltman,
was the most successful one as a tool of Feynman
propagator calculation in quantum field the-
ory.[1] In 1987, I.G.Halliday and R.M.Ricotta
conceived an idea known as negative dimen-
sional integral method.[2] When we calculated
Feynman propagators, we proposed a new pa-

Feynman integrals, Negative dimension, Hyper-geometric function, Fractional

rameter transformation and a new regulariza-
tion, so-called hypersurface regularization.[3-5]
In the previous paper we extended the idea of
negative dimension to all dimensions.[6] Using
our idea and our calculation method of Feyn-
man propagator integrals, we calculated bubble
one loop Feynman integral, following the con-
sideration of C.Anastasiou, E.W.N.Glover and
C.Oleari.[7] In this paper we calculate three
point Feynman integral, the so called vertex
function. In Sec.2, we recapitulate the negative
dimensional integral method and our idea as
an extension of this method. In Sec.3 we apply
our idea to three point Feynman diagram inte-
gral calculation. In Sec.4, we use our formula to
the calculation of the propagator which appears
when we calculate the decay width of the process
K2 — 2y. It is shown that the result is com-
pletely consistent with one of the previous calcu-
lations including the sign and the normalization
constant.[5] In Sec.5 we discuss the advantages
and the doubtful points concerning our new idea
and the new formula, and explain prospects for
the future as concluding remarks.
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2 Negative dimensional integral technique and its extension

First, we review the negative dimensional integral technique, discovered by Halliday and Ricotta,
and its extension to all the dimension. Hence we recall our new formula to calculate Feynman
propagator integrals.[3,6]

Let us consider the following integral
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Now we examine the integral [(p?)®d%p in the case of B = 0. The result becomes 0. In order to
avoid this difficulty we have to take o + % = 0. Accordingly , because « is positive, the dimension
d must be negative. This is an idea of negative dimension, proposed by Halliday and Ricotta, that
means an analytic continuation to negative dimension.

The concrete calculation is as follows,
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where we utilized the formula,
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having an integral such as the above type.

Next we introduce a complex parameter variable z and parametrize the above integral as the
contour integral along a small circle C' around the origin z = 0 on the complex plane. Because
exp(—p?z) is holomorphic at z = 0, the following equation holds
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applying Cauchy’s integral theorem concerning a function with « 4+ 1 order pole at z = 0. We
make out that negative dimensional integral method is consistent with the concept that a single
pole only is effective on the integral calculation of the complex variable parameter z.

Now we extend negative dimensional integral to all dimensional integrals in order that
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holds.( See Appendix B.) In this extension we adopted the concept that —n times differentiation
means n times integration. In this case it is not contraditory that we take the integral domain
from z to infinity.[10]( See Appendix B.)

We try to calculate the following integral, utilizing our new formula, in order to examine whether



our new formula holds or not. We have the following integral from Eq.(7) in Appendix C-2 of Ref.

[8];
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We diagonalize the momentum & and shift it as follows k = k—p. Then the process of the calculation
can be shown as
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Finally we can obtain the result as follows,
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This final result is consistent with one of the usual calculations except for a factor (—1)%. In the
calculation of the final term, we utilized the formula concerning I'-function; ( See Appendix A.)
Tl-0)  T(a—d/2)(-1)**% o)
I(1+d/2—a) D(ea)(-1)*

3 The application to three point Feynman propagator calculation

At this time, we will apply our idea and the new formula to the calculation of the three point
massive propagator diagram described in Fig.1.
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We have to calculate the following integral;
o &'k
T ins R = MEP(R2 + K )? = METe((k + By Ka)? — M3

where we introduced the indexes vy, v, 3 to generalize the denominator . We parametrize the Eq.
(10) using our formula Eq.(5).
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That is,
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where we transformed the momentum & in Minkovski space to k in Euclidean space. Now we
execute the diagonalization of k& and after that we take the sifting from & to k. Moreover we
exchange the integral order concerning variables k£ and z;(i = 1,2, 3), and carry out the & integration
first,
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Next we expand the integrand to the polynomial, utilizing Taylor expansion and multinomial
expansion formulas .
That is,
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Futhermore, we can obtain
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and expanding (z1 + 22 + 23)_d/ 2-li—l2=l3 by ysing the multipolynomial formula,
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Finally, we practice the contour integrals concerning complex variables z1, 29, 23, respectively, along
the small circles around the origins of 21, z2, 23 on the complex planes. We can obtain the following
result as the single poles only are effective;
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The constraint conditions are as follows,

lo+il3+mi+p=— (18)
Li+il3+mo+pr=—19 (19)
Li+la+ms+p3=—uv3 (20)
d
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By putting
lLi+la+il3=1 and mi+mg+ms=m, (22)

we can solve six equatins on arbitrary two or three variables from nine variables I;, m;, p;(i =
1,2,3) Therefore we can write down the specific functinal shapes by using hypergeometric function
although it is tedious calculation. To demonstrate that our idea and the new formula are true, we
would like to calculate the propagator diagram which we treated with the estimate of the decay
width in the decay K§ — 2 as drawn in Fig.2.[5]

4 The application to the decay process K2 — 2y

The equation to calculate is
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The process of the evaluation is as follows;
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where we put M2, M2, M2 into M? = M = M2 = u? (the pion mass squared), p3 = (p1 +p2)? =
2p1 -po = s1(the incoming Kaon mass squared) owing to p? = p2 = 0( the emitted real photon mass
squared 0).
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The next processes are the same as in the case of Equation (14) and (15).

Namely we can obtain
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The constraint conditions are as follows;
Il+m=mn, a+b+c=m-101-d/2, vi+a=0, vu+14+b=0, v3+1+c=0, (28)
a=-v;, n=d/2-o0, (29)
b=-wn—-1l, c=-v3—-1l, m=d/2—-0-1, (30)

where we put o to 0 = v + vo + vs.
Now we should pay attention to what a and n are constant.
Hence, making use of the formula I'(n + 1) = n! and other formulas, we have
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Exploiting the following formulas, (See Appendix A.)[9]
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In the case of v; =19 =wv3 =1 and d = 4 — 2¢(e — 0) we can obtain the following final result,
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Eq.(37) is wholly consistent with Eq.(38) in Ref.[5] including the normalization factor. This fact
would prove that our idea and the new formula are true.




5 Concluding Remarks

In this paper we reviewed negative dimensional
technique and the extension of this idea from
positive dimension until negative dimension us-
ing the concept of negative power differentiation
in mathematics.[10] We proposed a new idea
that we can do analytic continuation to all di-
mensions from negative until positive, and made
a new formula to calculate Feynman propaga-
tors. Utilizing this idea and the new formula we
calculated Feynman massive vertex diagram in
section 3. Then, applying this idea to the cal-
culation of the simplest propagator, which ap-
peared in the estimate of the decay width of the
process K — 2v decay, we showed that the
result is wholly consistent with the result of the
previous calculation in Ref.[5] including the nor-
malization constant in section 4. We think our
idea and the new formula would be true consid-
ering this fact.

The advantages of our idea and the calculation
method are

(i) The calculations are simple and do not
have any approximations. The single poles
only are effective, expanding the integrand
by exploiting Taylor expansion and multi-
nominal expansion formulas. This simpli-
fies the procedure of the calculation.

(i) We can express the results by hyperge-

ometric series, which is useful to calcu-

late numerically. By using hypergeomet-

ric function, we can obtain more useful in-
formations concerning physical and math-
ematical situations, because hypergeomet-
ric function can be analytic continuated
from one region to another one and has the
several integral representations.
(iii) We can decide the domains of the power
indexes in the expansions from the physi-
cal and mathematical constraints. From
this fact we can draw out new physical and
mathematical aspects of Feynman propa-
gator.

The disadvantages are

(i) Cauchy’s integral theorem is unstable be-
cause we made a new formula utilizing the
concept that negative times differentiation
means positive times integration .

(ii) The domains of the indexes in Taylor ex-

pansion and multinomial expansions are

slightly unclear.

Henceforth we have to examine the details of the
formula we obtained in section 3 by consider-
ing the threshold constraints , energy momentum
conservation, on shell and off shell constraints on
the inner and outer legs etc. When we calcu-
lated the propagator concerning the decay width
of K§ — 2v,we adopted pion mass y as the mass
with the inner line of momentum ¢, but at large
we will have to select more general mass M or a
function f(s1).

Appendix A

(1)  The proof of (A)_, = A=D®

=4y,
(A)p = A(A+1)-(A+2)(A+3) - (A+n—1) = r(l;x(i)n) (38)

(A)_p = W,and T(A)T(1 — A) = Sm”ﬂ < (39)

(1= A), = F(;(I f:;)”) (40)

T(A—n)T(1—A+n)= Sim(jl = (—1)"7Tsin7rA = F(Azi(ll)n_ 4 (41)



T(A)D(1 — A)
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(2)  The relation IF((mngll:gi:") = ((:11)): with integers m, n.

P'(n)l'(1-n) .. sinw(m+e) . B
m N 21—% sin(n +¢€) £—>0 wecosm(n+e¢)  (=1)n (44)

Appendix B

Let us explain more precisely the extension of negative dimension technique.
If f(z) is analytic everywhere in the complex z plane, % has k order pole at z = a. Therefore
from residue theorem we have

e
— 27iRes [ G _(zj)k]z 27”’@ [%((z —a)* (zf_(zi)k)]z:a
— Qmﬁ[zk _—e ). )
and hence o
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where the contour C is an arbitrary circle which has the center at z = a. When we take a = 0,we
can obtain as follows;
[ dr! DU &),
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We apply equation(47) to calculation of propagator.
That is, as f(z) = exp(—p?z) and putting k — 1 = ¢,
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dz® z=0 271 Cza+1
and
/ d'p(p*)® = / d% —exp (—p?2)| =(-1)e / dip & 7{ exp (—p’2)
2=0 2mi Jco zo+l
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T 2m 7szgczoﬁ%ﬂ dz:(—l)al“(a+1)7r25a+%,0. (49)

Next considering an idea that —« times differentiation means ¢ times integration, we get the
following calculation as the extension of negative dimension technique;
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and

a—* _ (=9t 1 f(2)
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and hence
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