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Abstrat

The frational alulus has been investigated by many physiists and mathematiians. In

these days a lot of solutions for the troubles in the theories of frational alulus ould be

gradually lari�ed and even more the frational alulus has been adopted in the various �elds

of physis and mathematis. In this paper we review the histories and the main theories of

frational integration and di�erentiation. We introdue a frational harmoni osillator theory

as an appliation of frational alulus.
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1 Introdution

In the previous, paper we made use of a on-

ept that minus n-order di�erentiation means

n-hold integration, so alled, that an integra-

tion is an inverse operation of di�erentiation,

and moreover generalized Cauhy's residue the-

orem in funtion of omplex variable by using

this idea[1℄. When we onsider the relation be-

tween di�erentiation and integration as an uni-

�ed onept of n-order, it is not so simple that we

transform a di�erentiation to an integration, be-

ause the di�erentiation is loal, but the integra-

tion is nonloal and has an integral domain ( up-

per limit and lower limit ) or integral onstants.

Although there are these diÆult problems, it

is possible that we extend the order n (natural

numbers) to an arbitrary real number � in the

alulus. This is a onept of frational alu-

lus. Reently frational alulus was exploited to

make the mehanism of some physial phenom-

ena lear, and many good results were obtained.

Frational alulus operation beomes nonloal,

therefore its operation is more omplex. Owing

to its nonloal property, we an estimate the in-

uenes of some physial phenomena whih hap-

pened in the past, as they say, memory e�ets.

It is astonishing that the damping e�ets are in-

luded intrinsially, applying the frational al-

ulus to solve the di�erential equation of har-

moni osillation[2℄-[4℄.

In setion 2, we tell the historial bakground

of frational alulus. In setion 3, we explain

the important formulas on the frational inte-

gration. In setion 4, we mention the famous

formulas of the frational di�erentiation[5℄[6℄.

In setion 5, we desribe a frational harmoni

osillator theory and demonstrate its thought-

provoking feature. As onluding remarks, we

disuss the merits and demerits of the frational

alulus in setion 6.

2 Historial bakground

From the beginning of the development in the alulus there existed an idea that we should

onsider the integration and di�erentiation of frational order. In those days this onept was by

�

Part time leturer of Applied Mathematis at National institute of Tehnology, Kushiro College. Mail

address:py4a-stu�asahi-net.or.jp

1



no means paid attention to. But Leipniz mentioned this idea in a letter to L'Hospital in 1695.

The earliest systemati investigations seem to have been made in the beginning and middle of the

19th entury by Liouville, Riemann, Holmgren, Euler et. The �rst appliation of the frational

alulus to a natural phenomenon was realized by Abel. He disovered in 1823 that the integral

equation for the tautohrone an be solved ompletely by using semiderivative formulation. In

1920 Heaviside introdued frational di�erentiation in his investigation of transmission line theory.

But his idea and artiles were disreputable extremely among the sientists at that time. Reently

the frational alulus is beoming to be paid attention to by sientists in several �elds. It is

known that Raspini dedued in 2000 an SU(3) symmetri wave equation, whih turned out to be

frational nature[7℄[8℄. Z�avada has generalized Raspini's result[9℄. Furthermore in 2005 Hermann

derived a mass formula, whih an �nd suessfully the ground state masses of the harmonium by

using frational alulus[10℄. It is notied that in 2006 Goldfain suggested the dynami uni�ation of

boson and fermion �elds using frational spin and the lose onnetion between spin and topologial

properties of spae-time utilizing frational alulus. Moreover he attempted to build a �eld theory

on the basis of frational di�erential and integral operators ( omplex quantum �eld theory)[11℄.

3 frational integration

Let us onsider the following integration of n-fold[5℄[6℄,

a

I

n

f(x) =

Z

x

a

Z

x

n�1

a

� � �

Z

x

1

a

f(x

0

)dx

0

� � �dx

n�1

: (1)

We an rewrite this integration using Cauhy's integral theorem as follows;

a

I

n

f(x) =

1

(n� 1)!

Z

x

a

(x� �)

n�1

f(�)d�: (2)

Now we may onsider the two ases

a

I

n

+

f(x) =

1

�(n)

Z

x

a

(x� �)

n�1

f(�)d� (3)

and

b

I

n

�

f(x) =

1

�(n)

Z

b

x

(� � x)

n�1

f(�)d� (4)

with n 2 N.

The �rst of these two equations is valid for x > a, and the seond for x < b. To distinguish the

two ases, we assign + and � symbols to these ases. These formulas an be extended to frational

ase onsidering the analyti ontinuation of a gamma funtion �(n).

That is,

a

I

�

+

f(x) =

1

�(�)

Z

x

a

(x� �)

��1

f(�)d�; (5)

b

I

�

�

f(x) =

1

�(�)

Z

b

x

(� � x)

��1

f(�)d�; (6)

where � is an arbitrary positive real number.

On the one hand Loiuvlle de�ned the following integrals by setting a = �1 and b =1,

I

�

L+

f(x) =

1

�(�)

Z

x

�1

(x� �)

��1

f(�)d� (7)

I

�

L�

f(x) =

1

�(�)

Z

+1

x

(� � x)

��1

f(�)d�; (8)
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on the other hand Riemann de�ned the integrals by doing a = 0, b = 0;

I

�

R+

f(x) =

1

�(�)

Z

x

0

(x� �)

��1

f(�)d� (9)

I

�

R�

f(x) =

1

�(�)

Z

0

x

(� � x)

��1

f(�)d�: (10)

4 frational di�erentiation

For the simple ase 0 < � < 1 we an get Liouville's de�nition of a frational derivative from

Eq.(7) and Eq.(8), onsidering that a derivative is the inverse operation of an integral.

D

�

L+

f(x) =

d

dx

I

1��

L+

f(x) =

1

�(1� �)

d

dx

Z

x

�1

(x� �)

��

f(�)d�; (11)

D

�

L�

f(x) =

d

dx

I

1��

L�

=

1

�(1� �)

d

dx

Z

+1

x

(� � x)

��

f(�)d�: (12)

where the introdution of the �rst order derivative is to give a lear de�nition onerning the initial

ondition on solving a di�erential equation.

Next we an write down Riemann de�nition of a frational derivative from Eq.(9) and Eq.(10),

D

�

R+

f(x) =

d

dx

I

1��

R+

f(x) =

1

�(1� �)

d

dx

Z

x

0

(x� �)

��

f(�)d� (13)

D

�

R�

f(x) =

d

dx

I

1��

R�

f(x) =

1

�(1� �)

d

dx

Z

0

x

(� � x)

��

f(�)d� (14)

Moreover Caputo de�ned a integral by putting the �rst order derivative into the integration.

From Eq.(11) and Eq.(12) we an obtain Loiuvlle-Caputo de�nition of a di�erentiation as follows;

D

�

LC+

f(x) = I

1��

L+

df(x)

d�

=

1

�(1� �)

Z

x

�1

(x� �)

��

df(�)

d�

d� (15)

D

�

LC�

f(x) = I

1��

L�

df(x)

d�

=

1

�(1� �)

Z

+1

x

(x� �)

��

df(�)

d�

d�: (16)

As a = b = 0 Caputo himself de�ned a derivative as follows;

D

�

C+

f(x) = I

1��

R+

df(x)

d�

=

1

�(1� �)

Z

x

0

(x� �)

��

df(�)

d�

d� (17)

D

�

C�

f(x) = I

1��

R�

df(x)

d�

=

1

�(1� �)

Z

0

x

(� � x)

��

df(�)

d�

d� (18)

Next we an extend the �rst order derivative to n-order derivative[12℄.

That is,

a

D

�

RL+

f(x) =

(

1

�(n��)

d

n

dx

n

R

x

a

f(�)

(x��)

��n+1

d�; (n� 1 < � < n)

d

n

dx

n

f(x); (� = n)

(19)

b

D

�

RL�

f(x) =

(

1

�(n��)

d

n

dx

n

R

b

x

f(�)

(��x)

��n+1

d�; (n� 1 < � < n)

d

n

dx

n

f(x); (� = n)

(20)

a

D

�

C+

f(x) =

(

1

�(n��)

R

x

a

f(�)

(n)

(x��)

��n+1

d�; (n� 1 < � < n)

d

n

dx

n

f(x); (� = n)

(21)
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b

D

�

C�

f(x) =

(

1

�(n��)

R

b

x

f(�)

(n)

(��x)

��n+1

d�; (n� 1 < � < n)

d

n

dx

n

f(x); (� = n)

(22)

where we an take the lower limit a and the upper limit b to 0 or �1, too.

There is a relation between D

�

C

and D

�

RL

;

D

�

C

f(x) = D

�

RL

f(x)�

n�1

X

k=0

x

k��

�(k � �+ 1)

f

(k)

(0): (23)

Now we prove this relation.

Proof

At �rst we expand f(x) to Taylor series at x = 0.

f(x) =

1

X

n=0

f

(n)

(0)

n!

x

n

=

n�1

X

k=0

f

(k)

(0)

k!

x

k

+

1

X

k=n

f

(k)

(0)

k!

x

k

=

n�1

X

k=0

f

(k)

(0)

k!

x

k

+R

n

(x); (24)

where

R

n

(x) =

1

X

k=n

f

(k)

(0)

k!

x

k

=

Z

x

0

f

(n)

(�)

(n� 1)!

(x� �)

n�1

d�; (25)

beause

R

n

(x) =

Z

x

0

f

(n)

(�)

(n� 1)!

(x� �)

n�1

d� =

h

�f

(n)

(�)

(n� 1)!n

(x� �)

n

i

x

0

+

1

n!

Z

x

0

f

(n+1)

(�)(x� �)

n

d�

=

f

(n)

(0)

n!

x

n

+

1

n!

[�

1

n+ 1

f

(n+1)

(�)(x� �)

(n+1)

i

x

0

+

1

(n+ 1)!

Z

x

0

f

(n+2)

(�)(x� �)

n+1

d�

= � � �� � �� � � =

1

X

k=n

1

k!

f

(k)

(0)x

k

(26)

Therefore

R

n

(x) =

1

�(n)

Z

x

0

f

(n)

(�)(x� �)

n�1

d� = I

n

f

(n)

(x); (27)

where we know that I

n

denotes a standard n-fold integral from Cauhy's integral theorem.

Next using Eq.(19) as a = 0, Eq.(24) and Eq.(27), we an alulate as follows,

D

�

RL

f(x) = D

�

RL

�

n�1

X

k=0

f

(k)

(0)

k!

x

k

+R

n

�

=

n�1

X

k=0

f

(k)

(0)

k!

D

�

RL

x

k

+D

�

RL

R

n

=

n�1

X

k=0

f

(k)

(0)

k!

1

�(n� �)

d

n

dx

n

Z

x

0

�

k

(x� �)

�+1�n

d� +D

�

RL

I

n

f

(n)

(x): (28)

Furthermore we evaluate the integral in the �rst term of Eq.(28), making use of beta funtion

B(p; q) =

R

1

0

t

p�1

(1� t)

q�1

dt.

Using the transformation of integral variable �=x = y, d� = xdy, the integral domain beomes

from 0 to 1.

Z

x

0

�

k

(x� �)

n���1

d� =

Z

x

0

x

k

�

�

x

�

k

x

n���1

�

1�

�

x

�

n���1

d�

= x

k+n��

Z

1

0

y

k

(1� y)

n���1

dy = x

k+n��

B(k + 1; n� �)

= x

k+n��

�(k + 1)�(n� �)

�(k + n� �+ 1)

(29)
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The �rst term of Eq.(28) beomes as follows;

n�1

X

k=0

f

(k)

(0)

k!

1

�(n� �)

d

n

dx

n

Z

x

0

�

k

(x� �)

�+1�n

d� (30)

=

n�1

X

k=0

f

(k)

(0)

�(k + 1)

1

�(n� �)

�(k + 1)�(n� �)

�(k + n� �+ 1)

x

k��

=

n�1

X

k=0

f

(k)

(0)

�(k + n� �+ 1)

x

k��

:

The seond term of Eq.(28) is as follows;

D

�

RL

I

n

f

(n)

(x) =

1

�(n� �)

d

n

dx

n

Z

x

0

I

n

f

(n)

(�)

(x� �)

�+1�n

d�

=

1

�(n� �)

Z

x

0

(n� �� 1)(n� �� 2)� � �(��)

I

n

f

(n)

(�)

(x� �)

�+1

d�

=

1

�(n� �)

�(n� �)

�(��)

Z

x

0

I

n

f

(n)

(�)

(x� �)

�+1

d� =

1

�(��)

Z

x

0

fI

n

f

(n)

(�)g(x� �)

���1

d�

= I

��

h�

I

n

�

f

(n)

(x)

i

= I

n��

f

(n)

(x)

=

1

�(n� �)

Z

x

0

f

(n)

(�)

(x� �)

�+1�n

d� = D

�

C

f(x) (31)

Therefore we an obtain the following relation;

D

�

RL

f(x) =

n�1

X

k=0

f

(k)

(0)

�(k + n� �+ 1)

x

k��

+D

�

C

f(x) (32)

When we have f

(k)

(0) = 0, (k = 0; 1; � � �; n� 1), D

�

RL

= D

�

C

holds though D

�

RL

f(x) is not equal to

D

�

C

f(x) generally.

5 Appliation of frational alulus to harmoni osillator

Let us onsider that we solve the equation of motion of a harmoni osillation as an appliation

of frational alulus.

At �rst we adopt the standard equation of motion as follows;

d

2

dt

2

x(t) + !

2

0

x(t) = f(t); (33)

where !

0

is the natural frequeny and f(t) is a fored osillation funtion.

The initial ondition is assumed _x(0) = x(0) = 0 for simpliity.

Next multiplying t� � to the both sides of Eq.(33) and integrating them from 0 to t, we an obtain

an integral equation inluding the initial onditions.

That is,

Z

t

0

(t� �)�x(�)d� +

Z

t

0

(t� �)!

2

0

x(�)d� =

Z

t

0

(t� �)f(�)d�;

h

(t� �) _x(�)

i

t

0

+

Z

t

0

_x(�)d� +

Z

t

0

(t� �)!

2

0

x(�)d� =

Z

t

0

(t� �)f(�)d�;

h

x(�)

i

t

0

+

Z

t

0

(t� �)!

2

0

x(�)d� =

Z

t

0

(t� �)f(�)d�;

x(t) = �!

2

0

Z

t

0

(t� �)x(�)d� +

Z

t

0

(t� �)f(�)d�: (34)

5



As the right hand side of Eq.(34) forms a onvolution integral, we an alulate the Laplae trans-

formation of Eq.(34) easily,

x(t) = �!

2

0

h

t � x(t)

i

+

h

t � f(t)

i

; (35)

X(s) = �!

2

0

(Lt)X(s) + (Lt)F (s); (36)

X(s) =

F (s)

s

2

+ !

2

0

; (37)

with Lx(t) = X(s) and Lf(t) = F (s) . The symbol * denotes a onvolution integral relation.

Taking the inverse transformation of Eq.(37) yields the solution x(t) of Eq.(33) as follows;

x(t) = L

�1

�

F (s)

s

2

+ !

2

0

�

=

�

1

!

0

L

�1

!

0

s

2

+ !

2

0

�

�L

�1

F (s) =

Z

t

0

1

!

0

sin!

0

(t� �)f(�)d� (38)

The response x(t) for a sinusoidal fored funtion f(t) = A sin!t beomes

x(t) =

Z

t

0

1

!

0

sin!

0

(t� �)f(�)d� =

Z

t

0

A sin!�

sin!

0

(t� �)

!

0

d�

=

A! sin!

0

t

!

0

(!

2

0

� !

2

)

+

A sin!t

!

2

0

� !

2

: (39)

Now we introdue a generalized n times derivative harmoni osillator equation perfuntorily,

d

n

dt

n

x(t) + !

n

0

x(t) = f(t) (n 2 N): (40)

We assume the initial onditions as follows;

d

n�1

x

dt

n�1

(0) =

d

n�2

x

dt

n�2

(0) = � � � = x(0) = 0: (41)

The integral equation satisfying these initial onditions an be sought for in the same way as

Eq.(34).

That is,

Z

t

0

(t� �)

n�1

d

n

d�

n

x(�)d� +

Z

t

0

(t� �)

n�1

!

n

0

x(�)d� =

Z

t

0

(t� �)

n�1

f(�)d�; (42)

x(t) = �

!

n

0

�(n)

Z

t

0

(t� �)

n�1

x(�)d� +

1

�(n)

Z

t

0

(t� �)

n�1

f(�)d�: (43)

Extending the natural number n 2 N to an arbitrary real number � 2 R, we obtain a frational

harmoni osillator di�erential equation;

d

�

dt

�

x(t) + !

�

0

x(t) = f(t): (44)

Furthermore onsidering an analyti ontinuation from n to � , the integral equation beomes

x(t) = �

!

�

0

�(�)

Z

t

0

(t� �)

��1

x(�)d� +

1

�(�)

Z

t

0

(t� �)

��1

f(�)d�

= �

!

�

0

�(�)

h

x(t) � (t

��1

)

i

+

1

�(�)

h

f(t) � (t

��1

)

i

: (45)

This formula is the same as the frational integral aording to Riemann de�nition;

R

I

�

+

f(x) =

1

�(�)

Z

x

0

(x� �)

��1

f(�)d� (46)
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The domain of � is onsidered 1 < � � 2. We an ensure easily that Eq.(45) agrees with Eq.(34)

when we take � = 2.

Applying the Laplae transform to both side of Eq.(45) yields

X(s) = �!

�

0

X(s)

s

�

+

F (s)

s

�

: (47)

Therefore we have

X(s) = F (s)

�

1

s

�

+ !

�

0

�

: (48)

The solution of Eq.(48) is

x(t) = L

�1

X(s) =

Z

t

0

f(�)g(t� �)d� (49)

with

L

�1

h

1

s

�

+ !

�

0

i

= g(t); and L

�1

F (s) = f(t): (50)

The generalized Mittag-Le�er funtion is de�ned as,

E

�;�

(z) =

1

X

k=0

z

k

�(�k + �)

: (51)

The Laplae transformation of t

��1

E

�;�

(�at

�

) beomes

Z

1

0

exp(�st)t

��1

E

�;�

(�at

�

)dt =

s

��

1 + as

��

: (52)

Putting � = �, we have

x(t) =

Z

t

0

f(�)(t� �)

��1

E

�;�

(�!

�

0

(t� �)

�

)d�: (53)

Taking f(t) = A sin!t as a fored funtion, we have

x(t) = A

Z

t

0

(t� �)

��1

E

�;�

(�!

�

0

(t� �)

�

)!�E

2;2

(�!

2

�

2

)d�; (54)

beause we an express sin!t using a Mittag-Le�er funtion as follows;

tE

2;2

(�!

2

t

2

) = t

1

X

k=0

(�w

2

t

2

)

k

�(2k + 2)

=

1

!

1

X

k=0

(�1)

k

(2k + 1)!

(!t)

2k+1

=

sin!t

!

: (55)

Taking Laplae transformation of Eq.(54) yields

X(s) = A!L

�

t

��1

E

�;�

(�!

�

0

t

�

)

�

L

�

tE

2;2

(�!

2

t

2

)

�

= A!

�

s

��

1 + !

�

0

s

��

��

s

�2

1 + !

2

s

�2

�

= A!

�

1

s

�

+ !

�

0

��

1

s

2

+ !

2

�

: (56)

Performing the inverse Laplae transform of Eq.(56), we an get the response x(t) as follows;

x(t) =

1

2�i

Z

�+i1

��i1

A! exp(st)

(s

2

+ !

2

)(s

�

+ !

�

0

)

ds: (57)

Adopting the Brownwih ontour as shown in Fig.1, Eq.(57) an be evaluated as the sum of two

ontributions, x

1

(t) and x

2

(t).
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Im(s)

A

B

C D

E

F

r

R

Fig.1 Brownwih ontour for the integral

Re(s)

�

0

i!

-i!

!

0

e

�i�=�

!

0

e

i�=�

The funtion x

1

(t) omes from the integral along the ourse BCDEFA, and x

2

(t) omes from the

four residues in the Brownwih ontour. It is known that the ontributions from the ars DE,

FA and BC beome zero in the limits r ! 0 and R ! 1. Evaluating the line integral along the

Brownwih ontour, we obtain

x(t) =

1

2�i

Z

�+i1

��i1

X(s) exp (st)ds (58)

= �

1

2�i

Z

lineCD

X(s) exp (st)ds�

1

2�i

Z

lineEF

X(s) exp (st)ds+

X

i

Residue(i)

= x

1

(t) + x

2

(t):

After the simple alulation onerning omplex variable funtion, we have

x

1

(t) =

Z

1

0

exp(�rt)K

�

(r; !

�

0

)dr; (59)

with

K

�

(r; !

�

0

) =

A! sin��

�(r

2

+ !

2

)(r

2�

+ 2r

�

!

�

0

os ��+ !

2�

0

)

: (60)

We know that the value of above integration beomes zero when t tends to 1.

Next we alulate the integration of x

2

(t), using the residue theorem of omplex variable funtion .

The poles in the Brownwih ontour are at s = �i! and s = !

0

exp (�i�=�) under the ondition

jarg(s)j � �. The proedure of the residue alulations an be performed as follows;

x

2

(t) = Res[s = �i!℄ + Res[s = !

0

exp (�i�=�)℄ = x

0

2

(t) + x

2

"(t); (61)

x

0

2

(t) = Res[s = i!℄ + Res[s = �i!℄ =

h

A!

exp (st)

(s+ i!)(s

�

+ !

�

0

)

i

s=i!

+

h

A!

exp (st)

(s� i!)(s

�

+ !

�

0

)

i

s=�i!
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= A!e

i!t

�!

�

sin (��=2) � i(!

�

os (��=2) + !

�

0

)

2!(!

2�

sin

2

(��=2) + (!

�

os (��=2) + !

�

0

)

2

)

+A!e

�i!t

�!

�

sin (��=2) + i(!

�

os (��=2) + !

�

0

)

2!(!

2�

sin

2

(��=2) + (!

�

os (��=2) + !

�

0

)

2

)

= A

!

�

sin (!t� ��=2) + !

�

0

sin!t

!

2�

+ !

2�

0

+ 2!

�

!

�

0

os (��=2)

; (62)

x

2

"(t) = Res[s = !

0

e

�

�

i

℄ + Res[s = !

0

e

�

�

�

i

℄

=

h

A!

exp (st)

(s

2

+ !

2

)

d

ds

(s

�

+ !

�

0

)

i

s=!

0

e

�

�

i

+

h

A!

exp (st)

(s

2

+ !

2

)

d

ds

(s

�

+ !

�

0

)

i

s=!

0

e

�

�

�

i

(63)

= e

!

0

t exp (

�

�

i)

A!

(!

2

0

e

2�

�

i

+ !

2

)�!

��1

0

e

�

�

(��1)i

+ e

!

0

t exp (�

�

�

i)

A!

(!

2

0

e

�

2�

�

i

+ !

2

)�!

��1

0

e

�

�

�

(��1)i

= A!

�

e

!

0

t exp (

�

�

i)

~

D

1

+ e

!

0

t exp (�

�

�

i)

~

D

2

�

; (64)

where we put as follows,

8

>

<

>

:

~

D

1

=

!

2

0

os

�

�

(�+1)+!

2

os

�

�

(��1)�i(!

2

0

sin

�

�

(�+1)+!

2

sin

�

�

(��1))

�!

��1

0

(!

4

0

+!

4

+2!

2

0

!

2

os

2�

�

)

~

D

2

=

!

2

0

os

�

�

(�+1)+!

2

os

�

�

(��1)+i(!

2

0

sin

�

�

(�+1)+!

2

sin

�

�

(��1))

�!

��1

0

(!

4

0

+!

4

+2!

2

0

!

2

os

2�

�

)

:

(65)

Therefore we have

x

2

"(t) =

2A! exp (!

0

t os(�=�))

�!

��1

0

(!

4

0

+ !

4

+ 2!

2

0

!

2

os(2�=�))

(66)

�

h

!

2

0

os (!

0

t sin

�

�

�

�

�

(�+ 1)) + !

2

os (!

0

t sin

�

�

�

�

�

(�� 1))

i

:

Finally we an obtain

x

2

(t) = x

0

2

(t) + x

2

"(t) = A

h

!

�

0

sin!t+ !

�

sin (!t� ��=2)

!

2�

0

+ !

2�

+ 2!

�

0

!

�

os (2�=�)

i

+

2A!

�!

��1

0

exp (!

0

t os (�=�))

h

!

2

osM + !

2

0

osN

!

4

+ !

4

0

+ 2!

2

!

2

0

os (2�=�)

i

; (67)

with

M = (!

0

t sin (�=�) + �(1� �)=�); N = (!

0

t sin (�=�) � �(1 + �)=�): (68)

After some algebra,we an get

x

2

(t) = A

1

sin (!t� Æ) +A

2

exp (�t) os (!

0

t sin(�=�) � �); (69)

with

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

A

1

=

A

(!

2�

0

+!

2�

+2!

�

0

!

�

os (��=2))

1=2

Æ = artan

h

!

�

sin (��=2)

!

�

0

+!

�

os (��=2)

i

A

2

=

2A!

�!

��1

0

(!

4

0

+!

4

+2!

2

0

!

2

os (��=2))

1=2

 = �!

0

os (�=�)

� = artan

h

!

2

0

sin (�(1+�)=�)�!

2

sin (�(1��)=�)

!

2

0

os (�(1+�)=�)+!

2

os (�(1��)=�)

i

:

(70)

The �rst term of Eq.(69) is a standard harmoni osillation term. As the onditin os(�=�) < 0 (

1 < � � 2) is true, the seond term is an intrinsi damping e�et term by making use of frational

alulus in spite of neither damping fators nor damping funtions. It is an astonishing aspet of

frational harmoni osillator. We naturally understand that Eq.(69) agrees with Eq.( 39) perfetly

by putting � = 2.
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6 Conluding remarks

In this paper we reviewed the historial as-

pet and the main important formulas of fra-

tional alulus and introdued a frational har-

moni osillator theory as an appliation of fra-

tional alulus. It was surprising that an intrin-

si damping term appears in the solution by ex-

ploiting frational harmoni osillator equation

without adding any damping fators or uto�

funtions.

The advantages of using frational alulus are;

(i) We an treat integration and di�erentiation

unitedly as di�erintegration. (ii) We an esti-

mate the phenomena whih happened at the past

as memory e�ets owing to the nonloality of

frational alulus. The disadvantages are; (i)

There exist many de�nitions with respet to dif-

ferintegration and the relations among them are

not perfetly lear until now. (ii) The alula-

tions are more omplex for the reason of non

loality of frational alulus. (iii) The physi-

al meanings of frational alulus are not om-

pletely lear.
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