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Abstra
t

The fra
tional 
al
ulus has been investigated by many physi
ists and mathemati
ians. In

these days a lot of solutions for the troubles in the theories of fra
tional 
al
ulus 
ould be

gradually 
lari�ed and even more the fra
tional 
al
ulus has been adopted in the various �elds

of physi
s and mathemati
s. In this paper we review the histories and the main theories of

fra
tional integration and di�erentiation. We introdu
e a fra
tional harmoni
 os
illator theory

as an appli
ation of fra
tional 
al
ulus.
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1 Introdu
tion

In the previous, paper we made use of a 
on-


ept that minus n-order di�erentiation means

n-hold integration, so 
alled, that an integra-

tion is an inverse operation of di�erentiation,

and moreover generalized Cau
hy's residue the-

orem in fun
tion of 
omplex variable by using

this idea[1℄. When we 
onsider the relation be-

tween di�erentiation and integration as an uni-

�ed 
on
ept of n-order, it is not so simple that we

transform a di�erentiation to an integration, be-


ause the di�erentiation is lo
al, but the integra-

tion is nonlo
al and has an integral domain ( up-

per limit and lower limit ) or integral 
onstants.

Although there are these diÆ
ult problems, it

is possible that we extend the order n (natural

numbers) to an arbitrary real number � in the


al
ulus. This is a 
on
ept of fra
tional 
al
u-

lus. Re
ently fra
tional 
al
ulus was exploited to

make the me
hanism of some physi
al phenom-

ena 
lear, and many good results were obtained.

Fra
tional 
al
ulus operation be
omes nonlo
al,

therefore its operation is more 
omplex. Owing

to its nonlo
al property, we 
an estimate the in-


uen
es of some physi
al phenomena whi
h hap-

pened in the past, as they say, memory e�e
ts.

It is astonishing that the damping e�e
ts are in-


luded intrinsi
ally, applying the fra
tional 
al-


ulus to solve the di�erential equation of har-

moni
 os
illation[2℄-[4℄.

In se
tion 2, we tell the histori
al ba
kground

of fra
tional 
al
ulus. In se
tion 3, we explain

the important formulas on the fra
tional inte-

gration. In se
tion 4, we mention the famous

formulas of the fra
tional di�erentiation[5℄[6℄.

In se
tion 5, we des
ribe a fra
tional harmoni


os
illator theory and demonstrate its thought-

provoking feature. As 
on
luding remarks, we

dis
uss the merits and demerits of the fra
tional


al
ulus in se
tion 6.

2 Histori
al ba
kground

From the beginning of the development in the 
al
ulus there existed an idea that we should


onsider the integration and di�erentiation of fra
tional order. In those days this 
on
ept was by
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no means paid attention to. But Leipniz mentioned this idea in a letter to L'Hospital in 1695.

The earliest systemati
 investigations seem to have been made in the beginning and middle of the

19th 
entury by Liouville, Riemann, Holmgren, Euler et
. The �rst appli
ation of the fra
tional


al
ulus to a natural phenomenon was realized by Abel. He dis
overed in 1823 that the integral

equation for the tauto
hrone 
an be solved 
ompletely by using semiderivative formulation. In

1920 Heaviside introdu
ed fra
tional di�erentiation in his investigation of transmission line theory.

But his idea and arti
les were disreputable extremely among the s
ientists at that time. Re
ently

the fra
tional 
al
ulus is be
oming to be paid attention to by s
ientists in several �elds. It is

known that Raspini dedu
ed in 2000 an SU(3) symmetri
 wave equation, whi
h turned out to be

fra
tional nature[7℄[8℄. Z�avada has generalized Raspini's result[9℄. Furthermore in 2005 Hermann

derived a mass formula, whi
h 
an �nd su

essfully the ground state masses of the 
harmonium by

using fra
tional 
al
ulus[10℄. It is noti
ed that in 2006 Goldfain suggested the dynami
 uni�
ation of

boson and fermion �elds using fra
tional spin and the 
lose 
onne
tion between spin and topologi
al

properties of spa
e-time utilizing fra
tional 
al
ulus. Moreover he attempted to build a �eld theory

on the basis of fra
tional di�erential and integral operators ( 
omplex quantum �eld theory)[11℄.

3 fra
tional integration

Let us 
onsider the following integration of n-fold[5℄[6℄,

a

I

n

f(x) =

Z

x

a

Z

x

n�1

a

� � �

Z

x

1

a

f(x

0

)dx

0

� � �dx

n�1

: (1)

We 
an rewrite this integration using Cau
hy's integral theorem as follows;

a

I

n

f(x) =

1

(n� 1)!

Z

x

a

(x� �)

n�1

f(�)d�: (2)

Now we may 
onsider the two 
ases

a

I

n

+

f(x) =

1

�(n)

Z

x

a

(x� �)

n�1

f(�)d� (3)

and

b

I

n

�

f(x) =

1

�(n)

Z

b

x

(� � x)

n�1

f(�)d� (4)

with n 2 N.

The �rst of these two equations is valid for x > a, and the se
ond for x < b. To distinguish the

two 
ases, we assign + and � symbols to these 
ases. These formulas 
an be extended to fra
tional


ase 
onsidering the analyti
 
ontinuation of a gamma fun
tion �(n).

That is,

a

I

�

+

f(x) =

1

�(�)

Z

x

a

(x� �)

��1

f(�)d�; (5)

b

I

�

�

f(x) =

1

�(�)

Z

b

x

(� � x)

��1

f(�)d�; (6)

where � is an arbitrary positive real number.

On the one hand Loiuvlle de�ned the following integrals by setting a = �1 and b =1,

I

�

L+

f(x) =

1

�(�)

Z

x

�1

(x� �)

��1

f(�)d� (7)

I

�

L�

f(x) =

1

�(�)

Z

+1

x

(� � x)

��1

f(�)d�; (8)
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on the other hand Riemann de�ned the integrals by doing a = 0, b = 0;

I

�

R+

f(x) =

1

�(�)

Z

x

0

(x� �)

��1

f(�)d� (9)

I

�

R�

f(x) =

1

�(�)

Z

0

x

(� � x)

��1

f(�)d�: (10)

4 fra
tional di�erentiation

For the simple 
ase 0 < � < 1 we 
an get Liouville's de�nition of a fra
tional derivative from

Eq.(7) and Eq.(8), 
onsidering that a derivative is the inverse operation of an integral.

D

�

L+

f(x) =

d

dx

I

1��

L+

f(x) =

1

�(1� �)

d

dx

Z

x

�1

(x� �)

��

f(�)d�; (11)

D

�

L�

f(x) =

d

dx

I

1��

L�

=

1

�(1� �)

d

dx

Z

+1

x

(� � x)

��

f(�)d�: (12)

where the introdu
tion of the �rst order derivative is to give a 
lear de�nition 
on
erning the initial


ondition on solving a di�erential equation.

Next we 
an write down Riemann de�nition of a fra
tional derivative from Eq.(9) and Eq.(10),

D

�

R+

f(x) =

d

dx

I

1��

R+

f(x) =

1

�(1� �)

d

dx

Z

x

0

(x� �)

��

f(�)d� (13)

D

�

R�

f(x) =

d

dx

I

1��

R�

f(x) =

1

�(1� �)

d

dx

Z

0

x

(� � x)

��

f(�)d� (14)

Moreover Caputo de�ned a integral by putting the �rst order derivative into the integration.

From Eq.(11) and Eq.(12) we 
an obtain Loiuvlle-Caputo de�nition of a di�erentiation as follows;

D

�

LC+

f(x) = I

1��

L+

df(x)

d�

=

1

�(1� �)

Z

x

�1

(x� �)

��

df(�)

d�

d� (15)

D

�

LC�

f(x) = I

1��

L�

df(x)

d�

=

1

�(1� �)

Z

+1

x

(x� �)

��

df(�)

d�

d�: (16)

As a = b = 0 Caputo himself de�ned a derivative as follows;

D

�

C+

f(x) = I

1��

R+

df(x)

d�

=

1

�(1� �)

Z

x

0

(x� �)

��

df(�)

d�

d� (17)

D

�

C�

f(x) = I

1��

R�

df(x)

d�

=

1

�(1� �)

Z

0

x

(� � x)

��

df(�)

d�

d� (18)

Next we 
an extend the �rst order derivative to n-order derivative[12℄.

That is,

a

D

�

RL+

f(x) =

(

1

�(n��)

d

n

dx

n

R

x

a

f(�)

(x��)

��n+1

d�; (n� 1 < � < n)

d

n

dx

n

f(x); (� = n)

(19)

b

D

�

RL�

f(x) =

(

1

�(n��)

d

n

dx

n

R

b

x

f(�)

(��x)

��n+1

d�; (n� 1 < � < n)

d

n

dx

n

f(x); (� = n)

(20)

a

D

�

C+

f(x) =

(

1

�(n��)

R

x

a

f(�)

(n)

(x��)

��n+1

d�; (n� 1 < � < n)

d

n

dx

n

f(x); (� = n)

(21)
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b

D

�

C�

f(x) =

(

1

�(n��)

R

b

x

f(�)

(n)

(��x)

��n+1

d�; (n� 1 < � < n)

d

n

dx

n

f(x); (� = n)

(22)

where we 
an take the lower limit a and the upper limit b to 0 or �1, too.

There is a relation between D

�

C

and D

�

RL

;

D

�

C

f(x) = D

�

RL

f(x)�

n�1

X

k=0

x

k��

�(k � �+ 1)

f

(k)

(0): (23)

Now we prove this relation.

Proof

At �rst we expand f(x) to Taylor series at x = 0.

f(x) =

1

X

n=0

f

(n)

(0)

n!

x

n

=

n�1

X

k=0

f

(k)

(0)

k!

x

k

+

1

X

k=n

f

(k)

(0)

k!

x

k

=

n�1

X

k=0

f

(k)

(0)

k!

x

k

+R

n

(x); (24)

where

R

n

(x) =

1

X

k=n

f

(k)

(0)

k!

x

k

=

Z

x

0

f

(n)

(�)

(n� 1)!

(x� �)

n�1

d�; (25)

be
ause

R

n

(x) =

Z

x

0

f

(n)

(�)

(n� 1)!

(x� �)

n�1

d� =

h

�f

(n)

(�)

(n� 1)!n

(x� �)

n

i

x

0

+

1

n!

Z

x

0

f

(n+1)

(�)(x� �)

n

d�

=

f

(n)

(0)

n!

x

n

+

1

n!

[�

1

n+ 1

f

(n+1)

(�)(x� �)

(n+1)

i

x

0

+

1

(n+ 1)!

Z

x

0

f

(n+2)

(�)(x� �)

n+1

d�

= � � �� � �� � � =

1

X

k=n

1

k!

f

(k)

(0)x

k

(26)

Therefore

R

n

(x) =

1

�(n)

Z

x

0

f

(n)

(�)(x� �)

n�1

d� = I

n

f

(n)

(x); (27)

where we know that I

n

denotes a standard n-fold integral from Cau
hy's integral theorem.

Next using Eq.(19) as a = 0, Eq.(24) and Eq.(27), we 
an 
al
ulate as follows,

D

�

RL

f(x) = D

�

RL

�

n�1

X

k=0

f

(k)

(0)

k!

x

k

+R

n

�

=

n�1

X

k=0

f

(k)

(0)

k!

D

�

RL

x

k

+D

�

RL

R

n

=

n�1

X

k=0

f

(k)

(0)

k!

1

�(n� �)

d

n

dx

n

Z

x

0

�

k

(x� �)

�+1�n

d� +D

�

RL

I

n

f

(n)

(x): (28)

Furthermore we evaluate the integral in the �rst term of Eq.(28), making use of beta fun
tion

B(p; q) =

R

1

0

t

p�1

(1� t)

q�1

dt.

Using the transformation of integral variable �=x = y, d� = xdy, the integral domain be
omes

from 0 to 1.

Z

x

0

�

k

(x� �)

n���1

d� =

Z

x

0

x

k

�

�

x

�

k

x

n���1

�

1�

�

x

�

n���1

d�

= x

k+n��

Z

1

0

y

k

(1� y)

n���1

dy = x

k+n��

B(k + 1; n� �)

= x

k+n��

�(k + 1)�(n� �)

�(k + n� �+ 1)

(29)
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The �rst term of Eq.(28) be
omes as follows;

n�1

X

k=0

f

(k)

(0)

k!

1

�(n� �)

d

n

dx

n

Z

x

0

�

k

(x� �)

�+1�n

d� (30)

=

n�1

X

k=0

f

(k)

(0)

�(k + 1)

1

�(n� �)

�(k + 1)�(n� �)

�(k + n� �+ 1)

x

k��

=

n�1

X

k=0

f

(k)

(0)

�(k + n� �+ 1)

x

k��

:

The se
ond term of Eq.(28) is as follows;

D

�

RL

I

n

f

(n)

(x) =

1

�(n� �)

d

n

dx

n

Z

x

0

I

n

f

(n)

(�)

(x� �)

�+1�n

d�

=

1

�(n� �)

Z

x

0

(n� �� 1)(n� �� 2)� � �(��)

I

n

f

(n)

(�)

(x� �)

�+1

d�

=

1

�(n� �)

�(n� �)

�(��)

Z

x

0

I

n

f

(n)

(�)

(x� �)

�+1

d� =

1

�(��)

Z

x

0

fI

n

f

(n)

(�)g(x� �)

���1

d�

= I

��

h�

I

n

�

f

(n)

(x)

i

= I

n��

f

(n)

(x)

=

1

�(n� �)

Z

x

0

f

(n)

(�)

(x� �)

�+1�n

d� = D

�

C

f(x) (31)

Therefore we 
an obtain the following relation;

D

�

RL

f(x) =

n�1

X

k=0

f

(k)

(0)

�(k + n� �+ 1)

x

k��

+D

�

C

f(x) (32)

When we have f

(k)

(0) = 0, (k = 0; 1; � � �; n� 1), D

�

RL

= D

�

C

holds though D

�

RL

f(x) is not equal to

D

�

C

f(x) generally.

5 Appli
ation of fra
tional 
al
ulus to harmoni
 os
illator

Let us 
onsider that we solve the equation of motion of a harmoni
 os
illation as an appli
ation

of fra
tional 
al
ulus.

At �rst we adopt the standard equation of motion as follows;

d

2

dt

2

x(t) + !

2

0

x(t) = f(t); (33)

where !

0

is the natural frequen
y and f(t) is a for
ed os
illation fun
tion.

The initial 
ondition is assumed _x(0) = x(0) = 0 for simpli
ity.

Next multiplying t� � to the both sides of Eq.(33) and integrating them from 0 to t, we 
an obtain

an integral equation in
luding the initial 
onditions.

That is,

Z

t

0

(t� �)�x(�)d� +

Z

t

0

(t� �)!

2

0

x(�)d� =

Z

t

0

(t� �)f(�)d�;

h

(t� �) _x(�)

i

t

0

+

Z

t

0

_x(�)d� +

Z

t

0

(t� �)!

2

0

x(�)d� =

Z

t

0

(t� �)f(�)d�;

h

x(�)

i

t

0

+

Z

t

0

(t� �)!

2

0

x(�)d� =

Z

t

0

(t� �)f(�)d�;

x(t) = �!

2

0

Z

t

0

(t� �)x(�)d� +

Z

t

0

(t� �)f(�)d�: (34)
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As the right hand side of Eq.(34) forms a 
onvolution integral, we 
an 
al
ulate the Lapla
e trans-

formation of Eq.(34) easily,

x(t) = �!

2

0

h

t � x(t)

i

+

h

t � f(t)

i

; (35)

X(s) = �!

2

0

(Lt)X(s) + (Lt)F (s); (36)

X(s) =

F (s)

s

2

+ !

2

0

; (37)

with Lx(t) = X(s) and Lf(t) = F (s) . The symbol * denotes a 
onvolution integral relation.

Taking the inverse transformation of Eq.(37) yields the solution x(t) of Eq.(33) as follows;

x(t) = L

�1

�

F (s)

s

2

+ !

2

0

�

=

�

1

!

0

L

�1

!

0

s

2

+ !

2

0

�

�L

�1

F (s) =

Z

t

0

1

!

0

sin!

0

(t� �)f(�)d� (38)

The response x(t) for a sinusoidal for
ed fun
tion f(t) = A sin!t be
omes

x(t) =

Z

t

0

1

!

0

sin!

0

(t� �)f(�)d� =

Z

t

0

A sin!�

sin!

0

(t� �)

!

0

d�

=

A! sin!

0

t

!

0

(!

2

0

� !

2

)

+

A sin!t

!

2

0

� !

2

: (39)

Now we introdu
e a generalized n times derivative harmoni
 os
illator equation perfun
torily,

d

n

dt

n

x(t) + !

n

0

x(t) = f(t) (n 2 N): (40)

We assume the initial 
onditions as follows;

d

n�1

x

dt

n�1

(0) =

d

n�2

x

dt

n�2

(0) = � � � = x(0) = 0: (41)

The integral equation satisfying these initial 
onditions 
an be sought for in the same way as

Eq.(34).

That is,

Z

t

0

(t� �)

n�1

d

n

d�

n

x(�)d� +

Z

t

0

(t� �)

n�1

!

n

0

x(�)d� =

Z

t

0

(t� �)

n�1

f(�)d�; (42)

x(t) = �

!

n

0

�(n)

Z

t

0

(t� �)

n�1

x(�)d� +

1

�(n)

Z

t

0

(t� �)

n�1

f(�)d�: (43)

Extending the natural number n 2 N to an arbitrary real number � 2 R, we obtain a fra
tional

harmoni
 os
illator di�erential equation;

d

�

dt

�

x(t) + !

�

0

x(t) = f(t): (44)

Furthermore 
onsidering an analyti
 
ontinuation from n to � , the integral equation be
omes

x(t) = �

!

�

0

�(�)

Z

t

0

(t� �)

��1

x(�)d� +

1

�(�)

Z

t

0

(t� �)

��1

f(�)d�

= �

!

�

0

�(�)

h

x(t) � (t

��1

)

i

+

1

�(�)

h

f(t) � (t

��1

)

i

: (45)

This formula is the same as the fra
tional integral a

ording to Riemann de�nition;

R

I

�

+

f(x) =

1

�(�)

Z

x

0

(x� �)

��1

f(�)d� (46)
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The domain of � is 
onsidered 1 < � � 2. We 
an ensure easily that Eq.(45) agrees with Eq.(34)

when we take � = 2.

Applying the Lapla
e transform to both side of Eq.(45) yields

X(s) = �!

�

0

X(s)

s

�

+

F (s)

s

�

: (47)

Therefore we have

X(s) = F (s)

�

1

s

�

+ !

�

0

�

: (48)

The solution of Eq.(48) is

x(t) = L

�1

X(s) =

Z

t

0

f(�)g(t� �)d� (49)

with

L

�1

h

1

s

�

+ !

�

0

i

= g(t); and L

�1

F (s) = f(t): (50)

The generalized Mittag-Le�er fun
tion is de�ned as,

E

�;�

(z) =

1

X

k=0

z

k

�(�k + �)

: (51)

The Lapla
e transformation of t

��1

E

�;�

(�at

�

) be
omes

Z

1

0

exp(�st)t

��1

E

�;�

(�at

�

)dt =

s

��

1 + as

��

: (52)

Putting � = �, we have

x(t) =

Z

t

0

f(�)(t� �)

��1

E

�;�

(�!

�

0

(t� �)

�

)d�: (53)

Taking f(t) = A sin!t as a for
ed fun
tion, we have

x(t) = A

Z

t

0

(t� �)

��1

E

�;�

(�!

�

0

(t� �)

�

)!�E

2;2

(�!

2

�

2

)d�; (54)

be
ause we 
an express sin!t using a Mittag-Le�er fun
tion as follows;

tE

2;2

(�!

2

t

2

) = t

1

X

k=0

(�w

2

t

2

)

k

�(2k + 2)

=

1

!

1

X

k=0

(�1)

k

(2k + 1)!

(!t)

2k+1

=

sin!t

!

: (55)

Taking Lapla
e transformation of Eq.(54) yields

X(s) = A!L

�

t

��1

E

�;�

(�!

�

0

t

�

)

�

L

�

tE

2;2

(�!

2

t

2

)

�

= A!

�

s

��

1 + !

�

0

s

��

��

s

�2

1 + !

2

s

�2

�

= A!

�

1

s

�

+ !

�

0

��

1

s

2

+ !

2

�

: (56)

Performing the inverse Lapla
e transform of Eq.(56), we 
an get the response x(t) as follows;

x(t) =

1

2�i

Z

�+i1

��i1

A! exp(st)

(s

2

+ !

2

)(s

�

+ !

�

0

)

ds: (57)

Adopting the Brownwi
h 
ontour as shown in Fig.1, Eq.(57) 
an be evaluated as the sum of two


ontributions, x

1

(t) and x

2

(t).
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Im(s)

A

B

C D

E

F

r

R

Fig.1 Brownwi
h 
ontour for the integral

Re(s)

�

0

i!

-i!

!

0

e

�i�=�

!

0

e

i�=�

The fun
tion x

1

(t) 
omes from the integral along the 
ourse BCDEFA, and x

2

(t) 
omes from the

four residues in the Brownwi
h 
ontour. It is known that the 
ontributions from the ar
s DE,

FA and BC be
ome zero in the limits r ! 0 and R ! 1. Evaluating the line integral along the

Brownwi
h 
ontour, we obtain

x(t) =

1

2�i

Z

�+i1

��i1

X(s) exp (st)ds (58)

= �

1

2�i

Z

lineCD

X(s) exp (st)ds�

1

2�i

Z

lineEF

X(s) exp (st)ds+

X

i

Residue(i)

= x

1

(t) + x

2

(t):

After the simple 
al
ulation 
on
erning 
omplex variable fun
tion, we have

x

1

(t) =

Z

1

0

exp(�rt)K

�

(r; !

�

0

)dr; (59)

with

K

�

(r; !

�

0

) =

A! sin��

�(r

2

+ !

2

)(r

2�

+ 2r

�

!

�

0


os ��+ !

2�

0

)

: (60)

We know that the value of above integration be
omes zero when t tends to 1.

Next we 
al
ulate the integration of x

2

(t), using the residue theorem of 
omplex variable fun
tion .

The poles in the Brownwi
h 
ontour are at s = �i! and s = !

0

exp (�i�=�) under the 
ondition

jarg(s)j � �. The pro
edure of the residue 
al
ulations 
an be performed as follows;

x

2

(t) = Res[s = �i!℄ + Res[s = !

0

exp (�i�=�)℄ = x

0

2

(t) + x

2

"(t); (61)

x

0

2

(t) = Res[s = i!℄ + Res[s = �i!℄ =

h

A!

exp (st)

(s+ i!)(s

�

+ !

�

0

)

i

s=i!

+

h

A!

exp (st)

(s� i!)(s

�

+ !

�

0

)

i

s=�i!
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= A!e

i!t

�!

�

sin (��=2) � i(!

�


os (��=2) + !

�

0

)

2!(!

2�

sin

2

(��=2) + (!

�


os (��=2) + !

�

0

)

2

)

+A!e

�i!t

�!

�

sin (��=2) + i(!

�


os (��=2) + !

�

0

)

2!(!

2�

sin

2

(��=2) + (!

�


os (��=2) + !

�

0

)

2

)

= A

!

�

sin (!t� ��=2) + !

�

0

sin!t

!

2�

+ !

2�

0

+ 2!

�

!

�

0


os (��=2)

; (62)

x

2

"(t) = Res[s = !

0

e

�

�

i

℄ + Res[s = !

0

e

�

�

�

i

℄

=

h

A!

exp (st)

(s

2

+ !

2

)

d

ds

(s

�

+ !

�

0

)

i

s=!

0

e

�

�

i

+

h

A!

exp (st)

(s

2

+ !

2

)

d

ds

(s

�

+ !

�

0

)

i

s=!

0

e

�

�

�

i

(63)

= e

!

0

t exp (

�

�

i)

A!

(!

2

0

e

2�

�

i

+ !

2

)�!

��1

0

e

�

�

(��1)i

+ e

!

0

t exp (�

�

�

i)

A!

(!

2

0

e

�

2�

�

i

+ !

2

)�!

��1

0

e

�

�

�

(��1)i

= A!

�

e

!

0

t exp (

�

�

i)

~

D

1

+ e

!

0

t exp (�

�

�

i)

~

D

2

�

; (64)

where we put as follows,

8

>

<

>

:

~

D

1

=

!

2

0


os

�

�

(�+1)+!

2


os

�

�

(��1)�i(!

2

0

sin

�

�

(�+1)+!

2

sin

�

�

(��1))

�!

��1

0

(!

4

0

+!

4

+2!

2

0

!

2


os

2�

�

)

~

D

2

=

!

2

0


os

�

�

(�+1)+!

2


os

�

�

(��1)+i(!

2

0

sin

�

�

(�+1)+!

2

sin

�

�

(��1))

�!

��1

0

(!

4

0

+!

4

+2!

2

0

!

2


os

2�

�

)

:

(65)

Therefore we have

x

2

"(t) =

2A! exp (!

0

t 
os(�=�))

�!

��1

0

(!

4

0

+ !

4

+ 2!

2

0

!

2


os(2�=�))

(66)

�

h

!

2

0


os (!

0

t sin

�

�

�

�

�

(�+ 1)) + !

2


os (!

0

t sin

�

�

�

�

�

(�� 1))

i

:

Finally we 
an obtain

x

2

(t) = x

0

2

(t) + x

2

"(t) = A

h

!

�

0

sin!t+ !

�

sin (!t� ��=2)

!

2�

0

+ !

2�

+ 2!

�

0

!

�


os (2�=�)

i

+

2A!

�!

��1

0

exp (!

0

t 
os (�=�))

h

!

2


osM + !

2

0


osN

!

4

+ !

4

0

+ 2!

2

!

2

0


os (2�=�)

i

; (67)

with

M = (!

0

t sin (�=�) + �(1� �)=�); N = (!

0

t sin (�=�) � �(1 + �)=�): (68)

After some algebra,we 
an get

x

2

(t) = A

1

sin (!t� Æ) +A

2

exp (�
t) 
os (!

0

t sin(�=�) � �); (69)

with

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

A

1

=

A

(!

2�

0

+!

2�

+2!

�

0

!

�


os (��=2))

1=2

Æ = ar
tan

h

!

�

sin (��=2)

!

�

0

+!

�


os (��=2)

i

A

2

=

2A!

�!

��1

0

(!

4

0

+!

4

+2!

2

0

!

2


os (��=2))

1=2


 = �!

0


os (�=�)

� = ar
tan

h

!

2

0

sin (�(1+�)=�)�!

2

sin (�(1��)=�)

!

2

0


os (�(1+�)=�)+!

2


os (�(1��)=�)

i

:

(70)

The �rst term of Eq.(69) is a standard harmoni
 os
illation term. As the 
onditin 
os(�=�) < 0 (

1 < � � 2) is true, the se
ond term is an intrinsi
 damping e�e
t term by making use of fra
tional


al
ulus in spite of neither damping fa
tors nor damping fun
tions. It is an astonishing aspe
t of

fra
tional harmoni
 os
illator. We naturally understand that Eq.(69) agrees with Eq.( 39) perfe
tly

by putting � = 2.
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6 Con
luding remarks

In this paper we reviewed the histori
al as-

pe
t and the main important formulas of fra
-

tional 
al
ulus and introdu
ed a fra
tional har-

moni
 os
illator theory as an appli
ation of fra
-

tional 
al
ulus. It was surprising that an intrin-

si
 damping term appears in the solution by ex-

ploiting fra
tional harmoni
 os
illator equation

without adding any damping fa
tors or 
uto�

fun
tions.

The advantages of using fra
tional 
al
ulus are;

(i) We 
an treat integration and di�erentiation

unitedly as di�erintegration. (ii) We 
an esti-

mate the phenomena whi
h happened at the past

as memory e�e
ts owing to the nonlo
ality of

fra
tional 
al
ulus. The disadvantages are; (i)

There exist many de�nitions with respe
t to dif-

ferintegration and the relations among them are

not perfe
tly 
lear until now. (ii) The 
al
ula-

tions are more 
omplex for the reason of non

lo
ality of fra
tional 
al
ulus. (iii) The physi-


al meanings of fra
tional 
al
ulus are not 
om-

pletely 
lear.
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