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Abstract

The fractional calculus has been investigated by many physicists and mathematicians. In
these days a lot of solutions for the troubles in the theories of fractional calculus could be
gradually clarified and even more the fractional calculus has been adopted in the various fields
of physics and mathematics. In this paper we review the histories and the main theories of
fractional integration and differentiation. We introduce a fractional harmonic oscillator theory

as an application of fractional calculus.
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1 Introduction

In the previous, paper we made use of a con-
cept that minus n-order differentiation means
n-hold integration, so called, that an integra-
tion is an inverse operation of differentiation,
and moreover generalized Cauchy’s residue the-
orem in function of complex variable by using
this idea[l]. When we consider the relation be-
tween differentiation and integration as an uni-
fied concept of n-order, it is not so simple that we
transform a differentiation to an integration, be-
cause the differentiation is local, but the integra-
tion is nonlocal and has an integral domain ( up-
per limit and lower limit ) or integral constants.
Although there are these difficult problems, it
is possible that we extend the order n (natural
numbers) to an arbitrary real number « in the
calculus. This is a concept of fractional calcu-
lus. Recently fractional calculus was exploited to
make the mechanism of some physical phenom-

2 Historical background

Fractional harmonic oscillator

ena clear, and many good results were obtained.
Fractional calculus operation becomes nonlocal,
therefore its operation is more complex. Owing
to its nonlocal property, we can estimate the in-
fluences of some physical phenomena which hap-
pened in the past, as they say, memory effects.
It is astonishing that the damping effects are in-
cluded intrinsically, applying the fractional cal-
culus to solve the differential equation of har-
monic oscillation[2]-[4].

In section 2, we tell the historical background
of fractional calculus. In section 3, we explain
the important formulas on the fractional inte-
gration. In section 4, we mention the famous
formulas of the fractional differentiation[5][6].
In section 5, we describe a fractional harmonic
oscillator theory and demonstrate its thought-
provoking feature. As concluding remarks, we
discuss the merits and demerits of the fractional
calculus in section 6.

From the beginning of the development in the calculus there existed an idea that we should
consider the integration and differentiation of fractional order. In those days this concept was by
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no means paid attention to. But Leipniz mentioned this idea in a letter to L’Hospital in 1695.
The earliest systematic investigations seem to have been made in the beginning and middle of the
19th century by Liouville, Riemann, Holmgren, Euler etc. The first application of the fractional
calculus to a natural phenomenon was realized by Abel. He discovered in 1823 that the integral
equation for the tautochrone can be solved completely by using semiderivative formulation. In
1920 Heaviside introduced fractional differentiation in his investigation of transmission line theory.
But his idea and articles were disreputable extremely among the scientists at that time. Recently
the fractional calculus is becoming to be paid attention to by scientists in several fields. It is
known that Raspini deduced in 2000 an SU(3) symmetric wave equation, which turned out to be
fractional nature[7][8]. Zavada has generalized Raspini’s result[9]. Furthermore in 2005 Hermann
derived a mass formula, which can find successfully the ground state masses of the charmonium by
using fractional calculus[10]. It is noticed that in 2006 Goldfain suggested the dynamic unification of
boson and fermion fields using fractional spin and the close connection between spin and topological
properties of space-time utilizing fractional calculus. Moreover he attempted to build a field theory
on the basis of fractional differential and integral operators ( complex quantum field theory)[11].

3 fractional integration

Let us consider the following integration of n-fold[5][6],

Jf (3 // / F(zo)dzo- - -dwn . (1)

We can rewrite this integration using Cauchy’s integral theorem as follows;

IS0 = =5 [ @0 e )
Now we may consider the two cases
2210 = 5o | - o (o) 3)
and . )
) = s [ e—arree @)
with n € N.

The first of these two equations is valid for > a, and the second for z < b. To distinguish the
two cases, we assign + and — symbols to these cases. These formulas can be extended to fractional
case considering the analytic continuation of a gamma function I'(n).

That is, .
IO f(2) = ﬁ JACRAIGT3 (5)

b
oI f(z) = ﬁ / (€ — o) F(e)de, (6)

where « is an arbitrary positive real number.
On the one hand Loiuvlle defined the following integrals by setting a = —oo and b = oo

T
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on the other hand Riemann defined the integrals by doing a = 0, b = 0;

13 6) = e /0 Ca— & f(6)de )
0
15 f(z) = ﬁ / (€ — o) F(E)de. (10)

4 fractional differentiation

For the simple case 0 < a < 1 we can get Liouville’s definition of a fractional derivative from
Eq.(7) and Eq.(8), considering that a derivative is the inverse operation of an integral.

D f(0) = -1, 0) = e e | (0= 670, (1)
+oo
DY f@) = 31 = s | (€ ) Hed (12)

where the introduction of the first order derivative is to give a clear definition concerning the initial
condition on solving a differential equation.
Next we can write down Riemann definition of a fractional derivative from Eq.(9) and Eq.(10),

Dy @) = S 11 0) = s e [ (@ = 67O (13)
0
Dy f0) = ST @) = frmaydr [ (€~ 2) A6 (14)

Moreover Caputo defined a integral by putting the first order derivative into the integration.
From Eq.(11) and Eq.(12) we can obtain Loiuvlle-Caputo definition of a differentiation as follows;

«@ _ l—adf(x) _ 1 “ 7adf(§)
Diecf@) =100 = s [ w0 L (15)
« _ 7l df(,’l?) _ 1 oo — df(f)
Die f@) = 08 = s [ e (16)
As a = b =0 Caputo himself defined a derivative as follows;
« _ l—adf('r) _ 1 ’ _ 7o¢df_(§)
DG (@) = I G = ey [ o -0 e a7)
a _ gl—a df([lf) _ 1 0 —a df(g)
D5 f(@) = L = s [ - Lae (18)
Next we can extend the first order derivative to n-order derivative[12].
That is,
L& JO g (n—1<a<n)
W D% — P(n—a) dz™ Ja (g—g)* nH17>
.0 (2) { o . (19)
1 ar b fO _
WDy () = { e 1 e (< <n) (20)
o/ (%), (v =mn)
1 v IO d¢, (n—1<a<n)
oDef(z) = { e f“n (z—)* T (21)
. e (@), (00 =)
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1 b_ O™ _
JD&_f(z) = { M) Jr gy (n =1 <a<n) (22)
2w (%), (@ =mn)
where we can take the lower limit ¢ and the upper limit b to 0 or +o00, too.
There is a relation between D¢ and D%; ;
-
D¢ = D% — . 2
8110) = Do () = X 5oy /0 (23)

Now we prove this relation.
Proof

At first we expand f(x) to Taylor series at = = 0.

00 (n) n—1 (k) 00 (k n—1 k
f(x)zzf n'(o)xn: f k,(O)xk"‘Z f O)JTk—i-Rn(x), (24)
n=0 ) k=0 k=n k=0
where ® -
— /M(0) ARI(Y o
Ralo) =30 et = [ e - e (25)
because
Ruw) = [ £ -0 ldsz[m(x—o W/ FE ) - €
(n)
-1 nfo)x” %[— %Hﬂ"“’(s)(x o] —&ntldg
1
:“"“m:gﬂf(k)(o)xk (26)
Therefore
o L I - e = P ), (27)

where we know that I™ denotes a standard n-fold integral from Cauchy’s integral theorem.
Next using Eq.(19) as a = 0, Eq.(24) and Eq.(27), we can calculate as follows,

n—1 (k)
D f(z DRL(Z £ Rn>: Z f k'(O) @zt + D% R,
k=0

1 dm T Sk o rneln

F(n — «a) dz™

I
M?

k=0

Furthermore we evaluate the integral in the first term of Eq.(28), making use of beta function
B(p,q) = [} =1 (1 — t)4~"dt.
Using the transformation of integral variable {/x =y, d¢ = xdy, the integral domain becomes

from 0 to 1.
/ (g — £y lge = / a71<1 _ g)"‘a_ldg

k+n a/ yk(l _ y)nfafldy — xk+nfo¢B(k + l,n _ a)
0
(
(

'k +1D)(n — )

:xk—l—n—a
k+n—a+1)

(29)



The first term of Eq.(28) becomes as follows;

n—1
T ()N S L
2T T e /0 @ogerrak (30)

—1 -1
_ ng: fO0) 1 TE+HDIm—0) o S FE0) ke

T+ 1)T(n—a)T(k+n—a+l) T(k+n—a+l) '

The second term of Eq.(28) is as follows;

dn T n
D) = o [ IR e

I(n — «a) dz™ x — §)atl-n
R S L ORI (LAl
_m/o (n—a—1)(n—a—2) )( é)aﬂdf
_ 1 Tm—a) [*I"f™() n pn) o
- T(n—a) I'(-a) /0 (x — &)atl € = / {rf - ) Ld¢
=1 [(1) 1 @)= e )
_ 1 S A (3) _
“ Ty g = ) @
Therefore we can obtain the following relation;
n—1
kfoc a
Dt (@ kzzo r k+n— a+ 1) + D& f (=) (32)

When we have f#)(0) =0, (k=0,1,---,n — 1), D%, = D% holds though D%, f(x) is not equal to
D2 f(x) generally.

5 Application of fractional calculus to harmonic oscillator

Let us consider that we solve the equation of motion of a harmonic oscillation as an application
of fractional calculus.

At first we adopt the standard equation of motion as follows;
d? 9
() + whalt) = £), (3)
where wy is the natural frequency and f(t) is a forced oscillation function.
The initial condition is assumed #(0) = z(0) = 0 for simplicity.
Next multiplying ¢ — 7 to the both sides of Eq.(33) and integrating them from 0 to ¢, we can obtain

an integral equation including the initial conditions.
That is,

/Ut(t—T) (T )dTJr/Ot(t—T)wUx( )dr _/Ot(t_T)f(T)dT,

- T)g'c(T)];Jr/Ut

[x(r)r—i-/ot(t— Pk (r)dr = /Ot(t 1) f(r)dr,

¢(T)d7+/ (t — )wla(r )dT—/O (t — 1) f(r)dr,

0

(1) = —w? /0 (t — 1)a(r)dr + /0 (t — 1) (r)dr. (34)
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As the right hand side of Eq.(34) forms a convolution integral, we can calculate the Laplace trans-
formation of Eq.(34) easily,

z(t) = —wi [t % x(t)} +[t * f(t)}, (35)

X(s) = —wi(Lt) X (s) + (Lt)F(s), (36)
F(s

X(5) = 0 @7

with Lz(t) = X (s) and Lf(t) = F(s) . The symbol * denotes a convolution integral relation.
Taking the inverse transformation of Eq.(37) yields the solution z(t) of Eq.(33) as follows;

t

1 .., wo . -
>:<w_0£ 132+w8>*£ 'F(s) = ; w—osmwo(t_T)f(T)dT (38)

F(s)
s2 + w?

x(t) = £

The response z(t) for a sinusoidal forced function f(¢) = Asinwt becomes

! 1 t . .
o) = [ st =) frar = | Asiner SRt =1 o

0 wWo 0 o
_ Awsinwgt +A2sinwt "

wo(wd —w?)  wi—w?

Now we introduce a generalized n times derivative harmonic oscillator equation perfunctorily,

mn

() Fwfa(t) = (1) (neN). (40)

We assume the initial conditions as follows;

dn—lx dn_2$

W(O):W(O):“':x(o):o- (41)
The integral equation satisfying these initial conditions can be sought for in the same way as
Eq.(34).
That is,

t —Tn_ldnafr T t — )" l(r)dr = t — )" (r)dT
/0“ ) ()d+/0(t =l (r)d /O(t Y=L f (7, (42)

P

o(t) = -8 /0 (t — )" a(r)dr + ﬁ/o (t— )" f(r)dr. (43)

Extending the natural number n € N to an arbitrary real number o € R, we obtain a fractional
harmonic oscillator differential equation;

«

dt—ax(t) +wiz(t) = f(¥). (44)

Furthermore considering an analytic continuation from n to « , the integral equation becomes

w t o 1 t o1
z(t) = —F(Z) /0 (t — 1) La(r)dr + W/{) (t—7)* " f(r)dr
wy o 1 e
=~y [0+ O [70 < 07 (45)
This formula is the same as the fractional integral according to Riemann definition;
RIEI@) = s [ o= 0" (46)
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The domain of « is considered 1 < a < 2. We can ensure easily that Eq.(45) agrees with Eq.(34)
when we take o = 2.
Applying the Laplace transform to both side of Eq.(45) yields

LX) | )

S¢ se

Therefore we have

The solution of Eq.(48) is
z(t) = / f(r)g(t—1) (49)

with

c—l[saiwg}:g(t), and L-VF(s) = f(1). (50)

The generalized Mittag-Leffler function is defined as,

o0
=S (51)
prs IN{ ak +p)
The Laplace transformation of #*~'E, s(—at®) becomes
/oo exp(—st) 7 By p(—at®)dt = —°— (52)
xp(—s —a = —\
0 p Oé,ﬂ 1 + as*Oé
Putting o = 3, we have
/ F)(t = 1) Baa(—w (t — 7)%)dr. (53)
Taking f(t) = Asinwt as a forced function, we have
A/ ) 1ané( wq (t — ’T)a)w’TEQ’Q(—w2T2)dT, (54)
because we can express sinwt using a Mittag-Leffler function as follows;
00 w2 00 .
%) 1 sin wt
22 Z 2k+2 wkz_: 2k+1 w (55)

Taking Laplace transformation of Eq.(54) yields

X(s) = ch(t“ "B o(~wf ))ﬁ(tE%?(_‘"QtQ))
-2

o Aw(l —i—sw(;sa) (1 —i—swzs*?): Aw(so‘ —il—w(c)“> (32 —ll—wQ)' (56)

Performing the inverse Laplace transform of Eq.(56), we can get the response z(t) as follows;

1 /“"’ioo Aw exp(st) J
— s.
270 Jo ino (8% + w?)(s* + wf)

z(t) = (57)

Adopting the Brownwich contour as shown in Fig.1, Eq.(57) can be evaluated as the sum of two
contributions, z1(t) and xy(t).



Im(s)

—

E.

Fig.1 Brownwich contour for the integral

The function z1(t) comes from the integral along the course BCDEFA, and z2(t) comes from the
four residues in the Brownwich contour. It is known that the contributions from the arcs DE,
FA and BC become zero in the limits r — 0 and R — oo. Evaluating the line integral along the
Brownwich contour, we obtain

1 o+100
z(t) = — X(s)exp (st)ds (58)
2my T—100
1 1
= —— X(s)exp (st)ds — — X (s)exp (st)ds + Residue(i
274 JlinecD (=) (5%) 27 JlineEF (#) (5%) ; ®

= 21(t) + 7o (1).

After the simple calculation concerning complex variable function, we have

z1(t) = /000 exp(—rt) Ko (r, wg)dr, (59)

with .
Awsinma

Kq(r,wf) = .
o wp) m(r? + w?)(r2® + 2rews cos ta + wi®)

We know that the value of above integration becomes zero when ¢ tends to oco.

Next we calculate the integration of z2(t), using the residue theorem of complex variable function .
The poles in the Brownwich contour are at s = +iw and s = wgexp (+im/«) under the condition
larg(s)| < w. The procedure of the residue calculations can be performed as follows;

T2(t) = Res[s = %iw] + Res[s = wpexp (Fin/a)] = x5 (t) + 22 (2), (61)
, . . exp (st) exp (st)
75(t) = Resls = iw] + Res|s = —iw] = [Aw (s + iw)(s™ + wg‘)]siw+ [A (s —iw)(s® + w§) ) s=—iw
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—w®sin (ra/2) — i(w® cos (ra/2) + wf)
2w(w? sin? (rar/2) + (w* cos (rar/2) + w§)?)

—w®sin (ra/2) + i(w® cos (T /2) + wf)
2w (w2 sin? (rar/2) + (W™ cos (mar/2) + w§)?)

w® sin (wt — Ta/2) + w sinwt

= Awe™!

_i_Awefiwt

= 62
w2® + w2 + 2wrw§ cos (rar/2)’ (62)
z5”(t) = Res[s = wpea’] + Res[s = wpe a']
t t
_ [Aw expd(s ) ] N [ expd(s ) N (63)
(82 + w?) 4= (52 + w§)d s=woea™ (82 + w?) £ (5 + w§) d s=woe™a’
— ewotexp(gi) - Aw 4 ewotexp(*gi) - Aw :
(wlea’ 4+ w2)aw teala ) (Wle ot 4 w?)awd tealambi
- Aw (ewotexp (gz)Dl + ewot exp (—gi)b2), (64)
where we put as follows,
D, = wg cos T (a+1)+w? cos g(a—l)—i(wg sin ~ (a+1)4w? sin g(a—l))
- awg‘fl(wé+w4+2w§w2 cos %") (65)
D, — wg cos I (a+1)+w? cos g(a—l)—l—i(wg sin Z(a+1)+w?sin g(a—l))
2= aw§ ™! (wé+w4+2w§w2 cos %’“) )
Therefore we have
., 2 Aw exp (wot cos(m/a))
2" (1) = a—1, 4 | 1 2,2 (66)
awy (wy + wt + 2wiw? cos(2m/ar))
x[ 2 cos (wot si T 7r( + 1)) + w? cos (wot si il 7r( 1))]
w wotsin — — —(« w wotsin — — —(a — .
0 0 a o« 0 a o«
Finally we can obtain
w§ sinwt + w® sin (wt — wa/2)
t) = 2 (t) + 227 (t) = A[ 0 }
[EZ( ) «TZ( ) + x9 ( ) w%o‘ + w2a + 2&]3&]0‘ COS (271'/04)
2Aw w?cos M + w? cos N
t [ . } 67
+aw8‘71 exXp ((,(J[) COS (71-/04)) w4 + wé + 2(4}2&)3 cos (271_/&) ( )
with
M = (wptsin(r/a) + 7(l —a)/a), N = (wotsin (r/a) — (1l + a)/a). (68)
After some algebra,we can get
zo(t) = Ay sin (wt — 6) + Az exp (—7t) cos (wot sin(m/a) — ), (69)
with
( Al — A
(w2 +we +2wFw? cos (ra/2))1/2
_ “ sin (ra/2)
§ = arctan [wgujrwsol‘rzzoz?waﬂ)
_ 2Aw
§ A2 = awd ™ (wi+wt+2w2w? cos (Ta/2))1/2 (70)
v = —wp cos (1/a)
. w? sin (7(14a)/a)—w? sin (7(1—a)/a)
\ ¢ = arctan |:w§ cos (m(1+a)/a)+w? cos (W(l—a)/a)] :

The first term of Eq.(69) is a standard harmonic oscillation term. As the conditin cos(m/a) < 0 (
1 < a < 2) is true, the second term is an intrinsic damping effect term by making use of fractional
calculus in spite of neither damping factors nor damping functions. It is an astonishing aspect of
fractional harmonic oscillator. We naturally understand that Eq.(69) agrees with Eq.( 39) perfectly

by putting oo = 2.



6 Concluding remarks

In this paper we reviewed the historical as-
pect and the main important formulas of frac-
tional calculus and introduced a fractional har-
monic oscillator theory as an application of frac-
tional calculus. It was surprising that an intrin-
sic damping term appears in the solution by ex-
ploiting fractional harmonic oscillator equation
without adding any damping factors or cutoff
functions.

The advantages of using fractional calculus are;
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