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Abstract

Davydychev discovered a useful and beautiful calculation method with respect to Feynman
integrals, using hypergeometric function theory and its analytic continuation. We employed the
half plane where there are smaller number of singularities at the time of utilizing Davydychev
method. In this paper we consider both analytic continuation to the right and left Semicircle
contours. Consequently we can derive new analytic continuation formulas on hypergeometric

functions.
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1 Introduction

When we want to compare the result we ob-
tained by using a physical theory with the ex-
perimental data in regards to a physical phe-
nomenon, we have to calculate Feynman inte-
grals mostly in the final stage, especially in field
theory. The calculation methods have been de-
veloped and improved by many physicists over
the past decades. In particular dimensional reg-
ularization which was discovered by G.’tHooft
and M.Veltman is the most effective calcula-
tion method and has been utilized by many re-
searchers.[1] While investigating the ways to find
the values of Feynman integrals, we found a
new parameter transformation and a calculation
method.[2]-[5]

In this paper we introduce and review the
Davydychev method that I think it is one of the
most beautiful calculation methods for Feynman
integral calculations.[6][7] Furthermore we find
new analytic continuation formulas for hyperge-
ometric functions 9 F1(z) and Fy(z,y). In section
2 we formulate the calculation of one loop type

propagator with power indexes o and . First of
all we make the calculation in the case of m; =0
and meo = m applying the theory of hypergeo-
metric function. Further we estimate it under
another convergence condition and show that it
perfectly agrees with the result of the calcula-
tion by using the analytic continuation formula
concerning hypergeometric function 9F(z). In
section 3 we calculate the one-loop type integral
in the case of m; =
eral convergence conditions. Hence we can give
hypergeometric function 3F»(z) a new analytic
continuation formula which 3F5(z) will be estab-
lished. In section 4 we evaluate the one-loop type
propagator in the case of mj##ms making use of
hypergeometric function Fy(z,y) with two vari-
ables, so called Appell’s function. And then we
show that we can write down a new analytic con-
tinuation formula concerning to Fy(z,y) . In sec-
tion 5 we discuss advantages and disadvantages
of the Davydychev method by utilizing hyperge-
ometric function. Moreover we show prospects
in the future.

mgo = m under the sev-
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2 Formulation and the calculation in the case of m; = 0 and my = m

Let’s consider the simplest one-loop type propagator integral with masses mj, mo. The integral
can be expressed as
) - d"k
J(Oé,67m1,m2) _/ (kQ_m%)a[(p_k)Q_m%]ﬁ7 (1)
where n = 4 — 2e and we introduced the power indexes o and § to keep the generality.
Now we examine the integral in the case of mq = 0 and mg = m.
That is,

d"k
(o, §;0,m) = / &)a[(p — K2 — m?P (2)

Using Taylor expansion under the convergence condition m?/(p — k)? < 1 and the definition of the

oo
hypergeometric function 1 Fy(3,z) = Z @ " we obtain

n!
n—0
1 “1 , m?  \J
1 m?  \J 1 m?
CERE 5; j <<p 2 ) ) [(p—k)?]ﬂlFO(B; oom) ¥
The Barnes integral representation is expressed as
11 [ ) 1
(5 = g | BTG +9) = G @
Substituting (3),(4) for (2), we get the following equation;
. B 1 100 B o d"k
Toups0.m) = g [ asTr @+ s)mt) [ ot
- F(ﬁl)Zm/ dsT(—s)T(6 + ) (—m?)* TO(a, B + 5), 5)

where J( (a, 4 s) is massless propagator.
JO)(a, B) is well-known and given as follows;

e B0.0) — Ak walanqsT(0/2= )T (n/2 - BT (a+ B —n/2)
J(O)(Omﬂ) = J(auﬂa()?()) = / (kz)a[(p— k)Q] =ma2qt (pZ) g P(a)r(ﬁ)r(n —a— ﬁ) )
(6)

Substituting (6) for (5) yields the following integral;

n n 1
J(a, 5;0,m) = Wfilfn(p2)5fa75—,

[ do( 2y R0 /2 = I+ 43D
L(@T(B)I(n—a—p—s) - '

s 2
2mi —100 p

Replacing the variable § — a — 8 — s with s, we have

. _ _2.-n n_opl(n/2—a) 1 1o P\ T(=8)T(s + )T (s + a + 5 —n/2)
J(e, §;0,m) = wzi' =" (=m?) ﬁF(Ol)F(ﬂ)%i/ (_W) ['(s+n/2) (8) |
8

we under-

—100

) ) I'j+1-s)
From the property of gamma function I'(—s) = lim — - ,
) = R =G —1—9 =39
stand that I'(—s) only in the integrand is a meromorphic function with s = j(j = 0,1,2,...) as



simple poles in the right half plane of complex variable s.

Now we perform the contour integral of (8) on the contour C enclosing all the poles of I'(—s), which
starts from —iR on the imaginary axis and runs along the imaginary axis to ¢R, then goes back
to the starting point along a right semicircle Cr of the radius R. Because the contour integral on
this right semicircle Cr tends to 0 when R—0, what we have to do is only the residue integral by
using residue theorem concerning complex variable integral as follows;

iT(la+j)(a+—n/2+]) )
i (n/2 +j) ’

. . — S p2
Residue[s = j; Integrand] = JZ;(m?>

and

n n I'(n/2 —
J(a, B;0,m) = 7T§il*n(—mz)570‘75MResidue[S = j; Integrand]

I'(a)L'(3)
_ nag 2 _opl(n/2 — ) — (a4 )T (a+8—n/2+j) (P> \I
=T 11 ( mz) B F(a)F(ﬂ) z_: j'F(n/2+j) <m2)
_ B2 E—am 5F n/Q—a Pla+B—n/2)(a+B—n/2);  p*\i
B (-m?) r'(3) Z J'T(n/2)(n/2); (mz)
— rhiln mZ)%—a—ﬁr(”/2 _F(()‘;)F((JQ/; ~2) F(avat B — /2% m?),  (10)

[e.9]

where a hypergeometric function o F}(z) is defined as 2 Fi(a,b;c; z) = Z WZ".
n=0 ’ n

This result holds under the convergence condition of hypergeometric series p?/m? < 1.

Next closing the contour of integration on the left half plane of complex variable s, we perform
the contour integral in the same way as it used to. From (8) I'(s + «) and I'(s + a + 5 — n/2)
in the integrand have single poles in the left semicircle. Therefore we can calculate the integral
by applying residue theorem. The residues of I'(s + «) and I'(s + a + 3 — n/2) are found because
I'(s + a) and I'(s + a + 8 — n/2) have single poles at s = —j —a and s = —j —a — f + n/2,
respectively, from the property of gamma function.

Namely we have

. _2d-n_ 2 %—a—ﬁr(n/2_a)
J(a, ;0,m) = m2i " (—m*) T ()T () (11)
X (Z Residue[s = —j — «; Integrand| + Z Residuefs = —j — (o + 8 — n/2); Integrand]),
; =

where the residue calculations were given as follows;

gResidue[S — —j— a; Integrand] :( . I;f)ar( )n/2 _2/2 g ‘Jl') 11;;72_ nﬁ/)Q) (p2)j

:( _ Zf)ar(i’jzig - Z)/2)2F1(a, 1+ o —n/21+n/2— B8;m?/p?), (12)
and

f: Residue[s = —j — (o + 8 — n/2); Integrand]

=0



¢ mA\a+Bn2D(a+ B —n/2AT(n/2 = ) = (a+ B —n/2);(1+ a+ B —n)j rm?\i

_(_172) T(n—a—p) Jz_; 711 +Jﬁ—n/2)j (p2> (13)
m?\e+8-n/2T(a + § — n/2)T(n/2 — B) . .

:(_F) e 2Fila+B—n/2,1+a+p—n1+B—n/2m?/p?),

where we used a formula (a)_; = (=1)7/(1 — a);.[8]
The result of the contour integral becomes

mz)g_ﬁwm(a, L+a—n/21+n/2 - B;m’/p’)

J(a, 8;0.m) = W%il_n(pQ)%_o‘_B [( — pT )
T(n/2 — a)T(n/2 — B)T(a + B —n/2)

()BT (n — a = )

oFi (a4 B —n/2,14+a+ 8 —n;14+ 8 —n/2;m?/p*)|.(14)

Furthermore utilizing analytic continuation formula, we can get the same result as the residue
integral,too. That is,the analytic continuation formula [9] is described as

oFi(a,b;c;2) = W(—z)_agfﬁ(a,a —c+la—b+1;1/z2)
I'(e)l'(a —b) _ ‘ .
+m(—z) b Fi(bb—c+1;b—a+1;1/2). (15)

2
Taking the assignment a =, b=a+ -5, c=3, 2= %,

from this formula we can obtain the analytic continuation formula of o Fy (o, a+8—n/2;n/2; p?/m?);
2F1 (0, a4 B = n/2n /2 p* /m?)
TG (s

Na+B8—-—n/2)I'(n/2 — «) m?

['(n/2)[(n/2 — B) < B p2>—a—ﬁ+’£

I'(a)l(n—a—p) m?

>_a2F1(a,a—n/2—|-1;n/2—,3—|—1;m2/p2) (16)

oFi(a+B—n/2,a+B—n+1;6—n/2+ 1;m?/p?)

Substituting (16) for (10), we can gain

n/2—a)l'a+ 8 —n/2)
['(n/2)0(B)

)_QQFl(a, a—n/2+1,1/2 - B+ 1;m?/p?)

n n F
J(a, 8:0,m) = w3itn (—m?) 3oLl

[ Twmre w2
Na+ B —n/2)T(n/2 — «) m?
L(n/2)T(n/2—B) 1 m?\a+b-3

+F(a)F(n —a—0) ( B pT)

2F1(oz+ﬁ—n/2,a+,8—n+1;ﬁ—n/2+1;m2/p)]

= m3il(p?) i Px [W( - T;;) P Ry a—n/2 4 Linf2— B+ Lmdfp?) (17)
I'(n/2 - B)T(n/2— a)T(a+ B —n/2)
L(a)T (BT (n —a—B)

2F1(a+ﬁ—n/2,a+6—n+1;ﬂ—n/2+1;m2/p2)],

This formula perfectly coincides with (14) which was obtained by using the contour integration
on the left half plane. This fact is so surprising. It means that we can write down many kind of
analytic continuation formulas by calculating Feynman propagators.



3 Calculation in the case of m; = ms =m

Next we consider another special case of the integral of (1) with m; = mg = m.
Making use of Taylor expansion, the definition of | Fy(a, z) and Barnes integral representation of
1Fy(a, z) produces

d"k 1 1
J(a, Bym,m) = / (k2 —m2)e[(p — k)2 —m?2]8 - ['(a)(B) (27i)?

/ / dsdtl'(—s)I'(s + a)I(=t)I'(t + 5)(—m2)s+t/ (kg)a+s[zi;lf_ ko)2]p+t (18)

and from (6)

d"k
(k2)ots[(p — k)2]P+t
F'n/2—a—-s)I'(n/2—-F—-t)'(a+B—n/2+s+1)

JO(a+s,8+1) —/

_ o5slen 2\ —a—f—s—t ( 19
T ) Fa+s)I'(+t)I'(n—a—-B—s—1t) . (19)
where J (0)(a + s, 8+ t) is massless propagator.
Substituting (19) for(18), we obtain
d"k n n 1 1
J . _ _ —5il-n 2\5—a-f 20
(@B m,m) / el ¥l CO T e eme Y

/ / ddt (_t)r(n/z_a_s)r(n/Q_ﬁ_t)r<a+5—n/2+s+t)<—m2>8+t

F'n—a—-08—-s—1t) P2

Changing variable ¢ to t = § —a — 8 — s — u , adopting Barnes Formula; [8]

[ Tk 900+ )T (e~ 5T - 5)ds F(”C)?((Ziz)fffifr(ﬂd)

I (21)

witha=a+8—-n/24+u,b=a+u,c=0,d=n/2 — a, and being able to integrate on s because
(=m?/p?)stt = (—=m?/p?)"/?~=F~" is independent of s,

ZLm' Zoo Na+B8-—n/24u+s)Na+u+ s)['(—=s)I'(n/2 —a— s)ds
Fa+—n/2+u)l'(B+u)'(a+u)(n/2+u) (22)
[(a+ B+ 2u) ’
we can get the following integral;
(e, Bym,m) = w3d' " (=m?) 2= P[L(a)l(B)] !
I vP(=w)l(a+w)l(B+wl(a+f—n/2+u)
5= [ du(- W) Tt 520 (23)

—1400
Closing the contour of integration to the right half plane and taking the right semicircle at the

center of origin as an integral contour on the u variable complex plane, I'(—u) only has single poles
with v = j(j7 = 0,1,2...) in the integrand. Applying the residue theorem yields

n T( —n/24+j
o fimm) = x50 iy ) 3 H R L R

5 ( B p7>j2 w%il_”(—m2)%_a_ﬁ Fla+ 8- n/2) - (@);(B)jla+ B — n/Z)j( P )j(24)

Lla+p) 4 (“jla+p)y \ m?

<



Exploiting the formula (a)2; = (3a);(3a + 1);2% [8] we obtain the final result as follows;

—a—ﬁr<a + B - n/2)
T(a+B)

2

X z(:) : ((1/2()(2%(5)3')(@ + B —n/2); ( p )j: W%il_n(_mQ)%_a_ﬁI‘(a + 8 —n/2)

J(a, B;m,m) = w2 i " (—m?)?

B);(1/2)(a+ B +1)); T(a+5)
xaPy (@, 8,0+ 8 = n/2 (1/2)(a+ B), (1/2)(a + 8 + 1);p* /4m?). (25)

Moreover we make another attempt that we close the contour of integration to the left half plane.
In this case I'(aw + u), T'(8 + u) and I'(aw + S — n/2 4 u) have single poles in this semicircle region
with u = —j —a, u=—j — 8 and u = —j — a — 8 + n/2,respectively, where the integer j tends
from 0 to oo .

The residue integration on I'(cv 4+ u) becomes

1 [ioe du(— i)uf(—u)F(a+u)F(ﬁ+U)F(Oé+5—n/2+u)

2mi | i (a+6+2u)
=(—7§>a Y R
mye, S o= B+1));( o= B);
=(= %) T@rE=n/2) ;)( ) 1/21+a—+6> )<1+(17{/2;(E;>j : (26)
:(—Zf)ar (8 —n/2) 3F2<a, (1/2)(a — B + 1), (1/2)(a—5+2);1+a—ﬁ,1+n/2—5;4m2/p2),

and the residue one concerning I'(5 + u) is just enough to change («, ) to (8, a).
That is,

I P\l ()T (a+u)T(B+u)l(a+ B —n/2+u) ; m?>\8
2mi ,iwdu<_ﬁ> T(a+ B+ 2u) _<_p7> LB (e =n/2)
X3Fo(B,1/2(8 —a4+1),1/2(8 —a+2);1+ B — a,1 4+ n/2 — a; 4m? /p?). (27)

The residue integration on I'(av + 8 — n/2 + u) is

1 ioo du<_]92)UF(—U)F(a+u)F(ﬁ+u)F(a+B—n/2+u)
['(a+ B+ 2u)

L PP\Ee by m2\iD(a+B—n/2+ ) T(n/2 - B—)T(n/2 —a—j)
_<_W> 2(—]?2) G (=1)T(n — a — B —2§)
7( B p2> f—a—BT(a+ B —n/2)[(n/2 — )T (n/2 — a)
S\ m?2 I'(n—a-p)

Am?\i (a+ B —n/2);((1/2)(a+ B —n+1));((1/2)(a+ B —n+2));
XZ( ) G0+ o —n/2);(1+ B —n/2);
_(pQ>a Bl (a+ B —n/2)[(n/2 — B)['(n/2 — )
U m? F'n—a-7)
xaPy(a+8=n/2,(1/2)(@+ B =n+1),(1/2)(a+ 8 n+2)i1+a—n/21+8—n/2%4m*/p?).

~ 2
2m ) _ieo m

(28)

Substituting (26),(27) and (28) for (23), we obtain the total result as follows;

(e, B;m,m) = w2t " (p?) 7



2. n_ -n
y (_ ) ﬂf(ﬁr(ﬁ)ﬂ)

#(= 1) O (5,0/2)(5 - a4 1), (28— 0 251+ 8- a1 /2 - )

[+ —n/2)T (n/Q—a) (n/2—B)
()BT (n — = )

><3Fg(oz+6 —n/2,(1/2)(a+B—-n+1),(1/2)(a+8—-—n+2);1+a—n/2,1+ [ — n/2;4m2/p2)].

3Fa (a0, (1/2) (0~ B+ 1), (1/2) (@~ B +2); 1+ a— B,1+n/2— f;4m?/p?)

. (20)

We can construct a new analytic continuation formula of 3F»(z) as n = 4,a = a, = b and
p?/4m? = z, referring to (25) and (29);

9—a—pL(a+ b2 —a)'(2 —b)

3F2 <a7 b7 a+b— 2; (1/2)(& + b)a (1/2)(0’ +b+ 1)7 Z): (_42) F(a)r(b)r(4 —a— b)

><3F2(a+b—2 (1/2)(a+b—3),(1/2)(a+b—2);a_1,b—1;1/z) (30)
F(—dz)” b?gz)—i_&)_i_(b_;;3Fg(b,(1/2)(b—a+1),(1/2)(()—a—|—2);3—a,b—a+1;1/z)
F(—dz)” ?EZ) (a)+(b_iigFg(a,(l/Q)(a—b—F1),(1/2)(a—b+2);3—b,a—b—|—1;1/z).

4 Calculation in the case of m;#ms

We consider the integral in the case of mi#msy from (1). Adopting the propagator calculation
of massless particles (6) and utilizing Taylor expansion, the definition of hypergeometric function
1Fp and Barnes integral representation of 1 Fj, we have

2

J(a, Bymi,ma) = w2 " (p?) 2P [()T(B)) 2m / / det %) <_ mTZ)t

p
XF(—s)F(—t)F(n/Q —a—s)I'(n/2—-3—-t)a+p5— n/2—|—8+t
'n—a—-p8—s—t)

(31)

Closing the contour to the right half plane on each complex sheet of s and t variable complex
planes,we know there are four cases taking the singularities in s-half plane and in t-half plane from
(31), that is, (i)the case of taking single poles of I'(—s) and I'(—t), (ii)the case of taking single
poles of I'(—s) and I'(n/2 — § —t), (iii)the case of considering I'(n/2 —a — s) and I'(—t), (iv)the
case of considering I'(n/2 — a — s) and I'(n/2 — g — t).

We can calculate the residues in each case, respectively.

(i) The case of I'(—s) and I'(—t)

There exist single poles s = j; and t = jo (j1 = 1,2,...,72 = 1,2,...), respectively, on each of the
s,t complex sheets. Therefore the residue becomes as follows;

Residue [s =j1,t = jo; Integrand]

—ZZ( )Jl(i @)jzf(n/2—a—jl)F(n/2—5—j2)F(Oz+5—n/2+j1 + j2)

— p? sl (=17 gl (=1)2T(n —a — B — j1 — j2)

_ I'(n/2—a)l(n/2 - )T (a+5—n/2)zz(ml>ﬁ<m2>32

F(n—a—ﬂ Jj1=072=0
(a+B8-n/2)ji1j(L+a+B—n)jij  T(n/2—a)l'(n/2-F)l(a+B—n/2)
1+a—-n/2);(14+8-n/2)), I'(n—a-—p)



xFy(a+B—n/21+a+f—nml+a—n/21+8—n/2mi/p’ m5/p®), (32)
where a hypergeometric function With two variables z, y is defined as

Fy(a,b;c,d;x,y) Z Z m':;rn m+n x™y", which is called Appell’s function. In this case the

m=0n=
convergence condition is given as follows, im2/ p2|% +|m3/ p2|% < 1.[10]
(ii) The case of I'(—s) and I'(n/2 — B —t)
I'(n/2 — B —t) has single poles at t =n/2 — B+ ja (j2 =0,1,2,...), and I'(—s) does at s = j; as
well as the case(i). Therefore the residue of this integral becomes as follows;

Residue [s =ji,t=n/2 — 8+ ]jo; Integrand]

J1 meo j2+%*ﬁr(ﬁ—n/2—jz)F(n/Q—Oé_jl)F(a"i'jl +j2)
) ZZ( ) (-52) Al DT n/2 —a— 1 — o) )
m2\ 28 O X m2Ni sm2N e (Oz)jl j2(1 + o — n/2)j1 J2
=I(8 - n/2)F(a)( - F;> ;:()];)(p” (?22) 1l (1 +E —n/2);(1+ n/;— ) s
2, n_
=T (8 - n/2T()( - %) TR0 o /2 o 2,04 n/2 - Bl )

(iii) The case of I'(n/2 — o — s) and I'(—t)
In this case the single poles are at s = n/2 — a + j; and t = j2 (j1,j2 = 0,1,2...). Then we can
get the residue of the contour integral;

Residue [s =n/2 —a+ji,t =]y Integrand}

S—atii s mo\R2T(a—n/2—j1)T(n/2 — B — 52)T(B + j1 + j2)
_;%:( 7)) T et (34
mi\ 5 m2\J1 ym3\J2 (B)jr+ja(1+ B —=n/2)j 44,
=T(a—n/2)0 ( p? ) j;)]2220< 1) (p22> Jilga!(1 —Ji——:zj/Z —a)j (1 +BJ_+jn/2)j2
2 n_
=T'(a—n/2)T ( p2)2 2(B,14+8—n/2;14n/2 —a, 1+ —n/2;m2/p?, m3/p?)
(iv) The case of I'(n/2 —a — s) and I'(n/2 — B — 1)

In this case we recognize
Residue [s =n/2 —a+ji,t =n/2 — [+ jo; Integrand |= 0, (35)

because the denominator in the integrand becomes I'n —a —f—s—t) =I'n—a - —n/2 +
a—j1—n/2+ f —j2) = T'(—j1 — j2) = —oo, where j; and jy are integers from 0 to co. Finally
we can obtain the result of integration (31) by adding up the residues of the cases (i),(ii),(iii) and
(iv). Substituting (32), (33) and (34) for (31), the final result becomes as follows;

J(e, Bymi,ma) = w2l T (p?) 2P

['(n/2 = a)l'(n/2 = p)I(a + B —n/2)
F(@)T (BT (n — o = B)

ln(

xFi(a+B8—n/2a+B—n+lia—n/2+1,1+8—n/2m2/p?, md/p?) (36)
o 2 n_q

+F(0‘F(($/2)(7Z21)2 Fy(B,8—n/2+1in/2 — a+ 1,8 —n/2+ Lym? /p?, m3/p?)
o 2, n_

+W(_TZ;)2 5F4(a,a—n/2+1;a—n/2+1,n/2—5+1;m%/1727m%/?2) 7



where the convergence condition is |m?/ pQ\% +|m3/ pQ\% <1
Next we carry out a variable transformation ¢t =5 —a — 38— s —u.
We can get the following equation;

T(a Bima,m) = i1 () (@I (E) o [ N / N de“(@S( Sy

(27”) —i00 J —100 my
" I(=s)I(—u)l'(n/2 —a—s)I'(a+—n/2+s+u)(a+s+u)
I'(n/2+u)

(37)

In this case there exist the two ways to calculate the residue by superimposing s complex sheet
on u complex sheet and closing the contours on their right half planes. (i) the case of considering
single poles from I'(—s) and I'(—u), (ii) the case of considering single poles from I'(n/2 — a — s)
and I'(—u). The calculations of the residues are performed as well as above procedure.

(i) the case of I'(—s) and I'(—u)

m3\J1 2\ je
Residue[s = ji, u = jo; Integrand| = Z Z ( 1) ( —2)
m3

Jj1=0j2=0
(n/2—a—]1)F(a+B—n/2+]1 + jo)T(a + j1 + j2)
Jl(=1)7 ja!(— )”F(n/2 + Jj2)

_ I'n/2 —a)l'(a)'(a+ B —n/2) Z Z(m1> (

(38)

)jz (@) jy 4o (4 B —1/2) 4114,

F(n/2 7120 j2=0 m% j1!j2!(n/2)j2(1+a_n/2)j1
_ F(H/Z — a)rlg?ifé)a + ﬁ - n/2) F4(Oé, a+ B o n/27 14— n/2’ n/27 m%/m%pQ/m%)’

(ii) The case of I'(n/2 — a — s) and I'(—u)

Residue [S =—a+ g +j1,u = jo3 Integrand}

LS5 S [y Ry w2 TG gt g2+ )

31=042=0 "2 m3 1 (=1)71j2!(=1)720(n/2 + j2)
2. n_ 2 . 2 .
ml) 2~ J1+J2 (n/Q)]l-i-Jz <m1)]1 ( p )]2
=(—5 INa—n/2)T it L
(m% ( /2) le:ojz:ojl'jg l(n/2)j,(1+n/2 —a)j \m3 m2
miy 5o 2,2 2, 2
:<W> Do —n/2)T(B)Fi(B,n/2;1+n/2 — a,n/2;m]/m5,p°/m3) (39)
2

From the results of the cases (i),(ii) we have
J(a, Bymy,ma) = w3~ (~m3) P

y [ (n/2— )@+ —n/2)

a,a+ B —n/21+a—n/2,n/2;mi/m3, p*/m3)

I'(n/2)I'(B)
a—n m2\ 5«
—i—W(Wé) F4(ﬁ,n/2;1—a+n/2,n/2;m%/m%,p2/m%) . (40)

We can write down an analytic continuation formula with respect to hypergeometric function
Fy(z,y) by considering the relation between (36) and (40).



Taking assignment as m?/p? = x,m3/p? = y,n = 4,a = a, 3 = b, we have

I'(2—a)l(a+b—2)

I'(b)
— (_y)a+b72 F(Q - CL)F(Q — b)l_‘(a 1+ bh— 2)
[(a)l'(b)['(4 —a— D)
I'a—2)
O

5 Concluding remarks

In this paper we introduced and reviewed
the Davydychev method concerning the calcu-
lation of loop type Feynman integral. Then
we found new analytic continuation formulas on
hypergeometric functions 3Fy(a,b,c;d, e; z) and
Fy(a,b;c,d;x,y). The Davydychev method ex-
ploiting hypergeometric functions has the follow-
ing merits. (i) We can investigate analytic prop-
erties of Feynman propagators by examining hy-
pergeometric functions. (ii) We can make several
new analytic continuation formulas or recurrence
ones of several hypergeometric functions using
the results of Feynman propagator integral cal-
culations. The demerits are as follows, (i) The
calculations are more complex rather than usual
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ficult to calculate more complex Feynman inte-
grals by using hypergeometric function theory.

In this paper we calculated the simplest loop
type Feynman integral, but we have to investi-
gate more complex Feynman integrals by mak-
ing use of hypergeometric functions. Then we
can make many new analytic continuation for-
mulas or recurrence ones on many hypergeomet-
ric functions by performing the calculations of
more complex Feynman integrals and contribute
to the development of hypergeometric function
theory.
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