ガウスの消去法

1 例題

$$\begin{cases} \epsilon x_1 + x_2 = a \\ x_1 + x_2 = 1 \end{cases}$$

ただし,

$$1 > a \gg \epsilon > 0$$

2 代数的な解析

まず,ガウスの消去法を代数的に実行してみよう.

<u> </u>	定数ベクトル b	
ϵ 1	a	
1 1	1	
(前進消去過程)		
ϵ 1	a	
$0 \qquad 1 - 1/\epsilon$	$1 - a/\epsilon$	
(後退代入過程)		
ϵ 0	$a - \frac{1 - a/\epsilon}{1 - 1/\epsilon}$	
$0 \qquad 1 - 1/\epsilon$	$1-a/\epsilon$	
1 0	$\left(a - \frac{1 - a/\epsilon}{1 - 1/\epsilon}\right) \frac{1}{\epsilon}$	
0 1	$\frac{1 - a/\epsilon}{1 - 1/\epsilon}$	
単位行列 E	解ベクトル x	

この結果より,厳密解および高精度近似解が求められる.

$$\begin{cases} x_1 &= \left(a - \frac{1 - a/\epsilon}{1 - 1/\epsilon}\right) \frac{1}{\epsilon} = \frac{a - 1}{\epsilon - 1} & \approx 1 - a \\ x_2 &= \frac{1 - a/\epsilon}{1 - 1/\epsilon} = \frac{\epsilon - a}{\epsilon - 1} & \approx a \end{cases}$$

3 数値的な解析

次に,ガウスの消去法を数値的に実行しよう.この場合,前節の前進消去過程において,第 2 行に情報落ち $1-1/\epsilon \approx 1/\epsilon$ および $1-a/\epsilon \approx a/\epsilon$ が発生し得る.

(南	前進消去過程)	
ϵ	1	a
0	$1-1/\epsilon\approx 1/\epsilon$	$1 - a/\epsilon \approx a/\epsilon$
(後	後退代入過程)	
ϵ	0	0
0	$1/\epsilon$	a/ϵ
1	0	0
0	1	a

あるいは , 前節の後退代入過程において , 第 1 行に桁落 ち $a-\frac{1-a/\epsilon}{1-1/\epsilon}\approx 0$ も発生し得る .

どちらにせよ,解析結果は

$$\begin{cases} x_1 \approx 0 \\ x_2 \approx a \end{cases}$$

となり, x_1 の精度が悪化してしまった.

4 ピボット選択

ガウスの消去法では,第 k 行を基準として,第 $i(i \neq k)$ 行に対して行基本変形

$$a_{ij} \leftarrow a_{ij} - a_{kj} \times a_{ik} \div a_{kk}$$

を反復的に適用し,係数行列 A の非対角要素 $a_{ij} (i \neq j)$ をゼロに変更して行く.

この過程で,もしピボット a_{kk} がゼロとなった場合には,それ以降の計算を続行できなくなってしまう.また, a_{kk} が微小値となった場合には,前節の通り,数値計算による誤差が増大してしまう.

これらの不都合を回避するためには, a_{kk} の絶対値ができるだけ大きくなるように,行同士を交換すると良い.行の順序,すなわち各方程式の順序を変えても,数学的にはまったく同じ連立方程式のままである.

では,誤差を抑制するために連立方程式の第1式と第2 式とを交換し,再度,数値的に解析してみよう.

(ピ	ボット交換)	
1	1	1
ϵ	1	a
(前	進消去過程)	
1	1	1
0	$1 - \epsilon \approx 1$	$a - \epsilon \approx a$
(後退代入過程)		
1	0	1-a
0	1	a

(この例では,前進消去の前処理として1度だけしかピボットを交換していない.しかし,一般に3元以上の連立方程式では,前進消去過程の内部で反復的にピボットを交換することになる.)

解析結果は

$$\begin{cases} x_1 & \approx 1 - a \\ x_2 & \approx a \end{cases}$$

となり,高精度な近似解が得られた(ただし,どんな問題でも高精度化できるわけではない.)